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I. INTRODUCTION 

 

In recent years, the increasing number of 

vehicles has made an efficient Parking 

Management System (PMS) essential for 

large buildings, enabling them to provide 

real-time information on the availability of 

parking slots. Traditionally, PMS relies on 

expensive sensor-based techniques, such 

as ultrasonic sensors [1], magnetic 

sensors [2][3], or a combination of both 

[4][5], mounted on each parking slot to 

detect the presence of a vehicle. While 

these approaches offer high accuracy, 

they entail additional costs in terms of 

sensor expenses, installation, and 

maintenance. More recently, vision-based 

solutions [6][7] have emerged as a cost-

effective alternative to conventional PMS 

systems that rely on hardware sensors 

attached to each parking slot. However, in 

existing research, cars are typically 

detected for monitored parking spaces. In 

our study, we employ a Fisheye camera to 

detect license plates, enabling us to further 

recognize the license plate number allows 

us to precisely monitor when a car enters 

a parking space. Fisheye lenses have 

gained popularity due to their ability to 

provide natural, wide, and omnidirectional 

coverage, which traditional cameras with 

narrow fields of view (FoV) cannot 

achieve. In parking lot monitoring systems, 

fisheye cameras offer advantages by 

effectively reducing the number of 

cameras required to cover broader views 
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of cars and parking spaces. However, 

fisheye cameras present distorted views 

that require image undistortion and 

unwarping techniques or dedicated 

designs to handle these distortions during 

processing. It is worth noting that, to the 

best of our knowledge, there is currently 

no open dataset available for fisheye car 

object detection in surveillance 

applications. Additionally, when a car is 

parked, only the front of the car is visible. 

In this paper, we propose the use of deep 

Convolutional Neural Network [8] (CNN) 

for fisheye cameras to detect the license 

plate of the car, enabling us to accurately 

verify the position of the car. The 

decentralization of our system offers clear 

advantages, including reduced 

communication overhead and the 

elimination of computing bottlenecks. As a 

result, the system scales better as the 

number of monitored parking spaces 

increases. Our research presents a smart 

parking lot monitoring system that utilizes 

deep learning, specifically YOLOv5 [9]. 

We believe that our approach is 

advantageous compared to systems using 

ground sensors, such as magnetic sensors 

placed on every parking space. With a 

single fisheye camera, we can 

simultaneously monitor multiple parking 

lots at a significantly lower cost than 

installing and maintaining sensors in each 

parking lot. 

 

II. RELATED WORK 

 

The A comprehensive and diverse 

dataset is indeed crucial for the 

advancement of parking monitoring 

systems. In our study, we utilized a high-

resolution, diverse, and large-scale 

parking lot dataset specifically collected 

for implementing our parking lot solution. 

The choice of algorithms is crucial for 

achieving good object detection 

performance. Over the years, significant 

advancements [10] [11] [12] have been 

made in the field of detection models. The 

success of AlexNet at the ImageNet Large 

Scale Visual Recognition Challenge in 

2012 [13] was a game changer in deep 

learning-based detection. This led to the 

development of twostage detectors, which 

generate proposals and classify them as 

potential objects. In recent years, one-

stage detectors have gained prominence, 

classifying each region of interest as an 

object or background within a single 

detection pipeline.  

There has been a growing emphasis on 

developing smaller networks for mobile 

applications, prioritizing fast inference 

times and high accuracy. Several notable 

models have emerged in this domain. 

MobileNetV2 + SSDLite, introduced in 

2018, is an improved version of the 

MobileNet classification network, 

combined with the SSDLite [14] detection 

framework. Tiny-YOLOv4, developed as 

a fast variant of YOLOv4 [15], offers 

efficient object detection capabilities. 

MobileDet [16], a TensorFlow-based 

detection model, enhances performance on 

nonGPU devices such as CPU, DSP, and 

Edge TPU. Additionally, YOLOv5, based 

on YOLOv3 [17], incorporates improved 

augmentation and auto learning bounding 

box anchors. 

 In our study, we chose YOLOv5 to 

compare its performance with other 

published models. While there have been 
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studies utilizing the Coral TPU or 

deploying state-of-the-art detection 

networks on embedded devices, a 

comprehensive exploration of using the 

Coral TPU with SOTA models is lacking 

[18] [19] [20].  

In summary, a comprehensive dataset 

and the selection of appropriate algorithms 

are crucial for advancing parking 

monitoring systems. Our study utilized a 

diverse and high-resolution dataset, along 

with the YOLOv5 model, to achieve 

accurate and efficient object detection. 

Further research is needed to explore the 

utilization of SOTA models such as 

YOLOv7 and YOLOv8 with the Coral TPU. 

 

III. METHODOLOGY 

 

1. YOLOv5 

Ultralytics YOLOv5 builds upon the 

success of previous YOLO versions, 

introducing new features and 

improvements to enhance performance 

and flexibility even further. YOLOv5 is 

designed to be fast, accurate, and easy to 

use, making it an excellent choice for a 

wide range of object detection, instance 

segmentation and image classification 

tasks. It has three components, including 

the input layer, backbone network, neck 

network, and output detection layer. An 

illustration of this structure can be seen in 

Figure 1. 

 

1.1. Backbone 

The backbone network plays a crucial 

role in feature extraction from input 

images. In the case of YOLOv5, it 

leverages Cross Stage Partial Networks 

[21](CSPNet) and Focus as its backbone 

to effectively identify important aspects of 

the input image. CSPNet addresses the 

issue of redundant network optimization 

gradient information within the backbone 

network and reduces the redundancy 

while enhancing the learning ability of 

CNNs. The backbone network utilizes the 

feature map from the base layer and 

employs a dense block to propagate the 

duplicated feature map to the next level, 

thus separating the feature map from the 

base layer. 

 

1.2. Neck 

The In this study, the CSP2 structure is 

adopted to enhance the fusion of network 

characteristics. The Neck component is 

commonly used to construct feature 

pyramids, as mentioned in [22], which 

helps models achieve effective object 

scaling generalization. By incorporating a 

Neck module, the network becomes 

capable of recognizing the same object at 

different sizes and scales. The Neck is 

designed to optimize the features 

extracted by the backbone network and 

typically consists of bottom-up and top-

down pathways. 

Traditionally, the Neck incorporates an 

up-sampling and down sampling block to 

efficiently re-process and utilize the 

feature maps extracted at different stages 

by the backbone. This allows for effective 

feature aggregation. Unlike single-shot 

detectors (SSD) [23], which do not 

involve a feature layer aggregation 

process, the Neck plays a critical role in 

the architecture of target detection models. 

By leveraging the Neck component in the 

network architecture, this study aims to 

enhance the fusion of network 
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characteristics, enabling better object 

scaling generalization and improving the 

detection performance. 

 

1.3. Head 

The Head component in the object 

detection process is responsible for the 

final detection and classification. After 

anchor boxes are applied to the feature 

maps, the Head generates the final output 

vectors, which include class probabilities 

and bounding boxes.  

The main role of the Head is to determine 

the location and category of the detected 

objects using the feature maps extracted 

from the backbone network. In object 

detection, there are generally two types of 

heads: one-stage object detectors and 

two-stage object detectors. The RCNN 

(Region-based Convolutional Neural 

Network) series is a prominent example of 

two-stage detectors, which have 

historically been dominant in the field of 

object detection. 

 Fig. 1. Structural architecture network of YOLOv5 

 

2024년 01월 스마트미디어저널 27Smart Media Journal / Vol.13, No.01 / ISSN:2287-1322



5 

 

In the YOLOv5 model, the Head is similar 

to the YOLOv3 [24] and YOLOv4 [25] 

models. It is primarily used in the final 

stage of the detection process, as 

mentioned in [26]. Once the anchor boxes 

are applied to the feature map, the Head 

generates the final output vector, which 

consists of class probabilities, object 

scores, and bounding boxes. Overall, the 

Head component in YOLOv5 is responsible 

for the crucial task of determining the 

location and category of objects in the 

input image. It completes the object 

detection pipeline by generating the final 

output vector that represents the detected 

objects and their associated information. 

2. Quantization 

In edge and embedded technologies, 

limited memory and computational 

capabilities pose challenges. To mitigate 

the strain on these constrained resources, 

optimization techniques for TensorFlow 

models have been employed. One 

commonly adopted method, especially 

with the Edge TPU Accelerator Module, is 

model quantization. Quantization is a 

valuable approach in AI modeling as it 

effectively reduces latency, power 

consumption, and model size while 

maintaining reasonably high accuracy 

levels 

The deployment of deep neural networks 

(DNNs) to the Edge TPU involves a 

multi-step process (Figure 2), as 

illustrated in Figure 2. Initially, a deep 

learning model is transformed into the 

TensorFlow Lite (tflite) format. The 

model, initially represented in float32 

precision, is then quantized to int8 or uint8 

format [27]. This quantization process 

reduces the precision of the model weights 

and activations, making them more 

compact and suitable for efficient 

execution on low-power devices. 

Once the model is quantized, the tflite file 

is further processed by the Edge TPU 

compiler. This compilation step optimizes 

the model specifically for the Edge TPU, 

resulting in a specialized tflite format 

tailored for inference on the Edge TPU. 

The optimized model is designed to take 

full advantage of the hardware capabilities 

of the Edge TPU, enabling efficient and 

fast inference on edge devices.  

By employing model quantization and the 

Edge TPU compiler, the deployment of 

deep learning models to the Edge TPU 

becomes feasible, providing a balance 

between resource utilization, inference 

speed, and accuracy.  

These optimization techniques enable 

efficient execution of AI models on edge 

and embedded devices, opening up 

possibilities for deploying sophisticated AI 

applications in resource-constrained 

environments. 

 

3. Decision Tree 

The complete decision tree algorithm is 

shown in Figure 3. Fisheye lenses provide 

a wide field of view, but they introduce 

distortion to the captured images, as 

Fig. 2. Deployment of neural networks to the Edge TPU  
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shown in Figure 4. This distortion can pose 

challenges for object detection and 

training models. To address this issue, we 

propose using the LaRecNet algorithm [21] 

to undistort the raw images captured by 

the fisheye camera.  

Figure 5 demonstrates the undistorted 

images after applying the LaRecNet 

algorithm. By correcting the distortion, we 

obtain more accurate representations of 

the scene, which improves the 

performance of our detection and tracking 

system.  

Once the images are undistorted, we 

employ the YOLOv5s deep learning 

algorithm to detect license plates (LP) in 

the frames. To ensure reliable detection, 

we set a confidence threshold of 0.90. The 

detection process is performed frame by 

frame, enabling real-time identification of 

license plates with high accuracy.  

Simultaneously, we define parking spaces 

by specifying four points in each frame: 

(x1, y1), (x2, y2), (x3, y3), and (x4, y4). 

If a license plate is detected within a 

defined parking space, we initiate tracking 

using the Simple Online and Realtime 

Tracking (SORT) algorithm [29]. This 

tracking mechanism allows us to monitor 

the movement of detected license plates 

over time, enabling efficient parking space 

management.  

To facilitate tracking and management, 

we assign unique IDs to newly detected 

license plates entering the parking lot. 

This ID assignment enables us to 

accurately track the movement and 

occupancy of parking spaces, ensuring 

effective utilization of parking resources.  

By combining the undistortion process 

using LaRecNet, YOLOv5s for license 

plate detection, deep Soft for tracking, and 

the utilization of unique IDs for license 

plates, our proposed system offers an 

efficient and accurate solution for object 

detection and tracking in parking lots using 

fisheye cameras. 

 

 
 

Fig. 3. Parking lot occupancy decision tree 

 

 
 

    Fig. 4. Distortion image from Fisheye lenses 
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Fig. 5. Undistorted image 

 

Fig. 6. NVIDIA Jetson Nano mainboard 

 

 

Fig. 7. Accelerator Google Coral Edge TPU 

 

 

IV. EXPERIMENT AND RESULTS 

 

1. Dataset 

The dataset for this study comprises 

10,000 undistorted, annotated, and labeled 

images collected from Hongik University 

Parking Lot, each with a resolution of 

2560x1280 pixels. Each image within this 

dataset contains 1 to 6 bounding boxes 

representing license plate object classes. 

The dataset was divided into three subsets: 

70% for training, 10% for validation, and 

20% for testing. This common partitioning 

approach is employed to prevent 

overfitting and assess the model’s 

performance. 

 

2. Hardware 

The models were trained on a computer 

with the configuration: CPU AMD Ryzen 

Threadripper 2950X @ 4.40 GHz (16 

threads x 32 core), 64GB DDR4 2666MHZ 

for RAM, GPU NVIDIA GeForce GTX 

2080 Ti 12GB x 2, Linux Ubuntu 20.04.4 

LTS and Python 3.9.12. In terms of the 

embedded board, NVIDIA Jetson Nano in 

Figure5 (CPU: ARM® Cortex® A57 

MPCore (Quad-Core) 

Processor,Maximum Operating Frequency: 

1.43GHz, Maxwell GPU 128-core GPU, 

Maximum Operating Frequency: 921MHz) 

was used for the experimental process, 

with the assistance of the accelerator 

Google Coral Edge TPU in Figure 6. 

 

3. Evaluation metrics 

In our experimental evaluation, we 

utilized several metrics to assess the 

performance of the models: Precision (the 

ratio of correctly predicted bounding 

boxes to the total number of predicted 

bounding boxes), Recall (the ratio of 

correctly predicted bounding boxes to the 

total number of ground truth bounding 

boxes), F1-score (The metrics measures 

the balance between precision and recall. 

When the value of F1-score is high, this 

means both the precision and recall are 
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high. A lower F1-score means a greater 

imbalance between precision and recall), 

Accuracy (represents the overall 

correctness of the model’s predictions and 

is calculated as the ratio of the sum of true 

positives and true negatives to the total 

number of samples). 

 

Precision (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

F1 score =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
 

 

Accuracy =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁)
 

 

TP (True Positives): The number of 

correctly predicted bounding boxes for the 

single class. FP (False Positives): The 

number of predicted bounding boxes that 

do not match the ground truth for the 

single class. FN (False Negatives): The 

number of ground truth bounding boxes 

that were not detected by the model for 

the single class.  

In addition to these evaluation metrics, 

we also considered the inference time and 

model file size. Inference time refers to the 

duration taken by the model to process an 

input image and make predictions. A 

shorter inference time is desirable, 

especially for embedded systems with 

limited computational capabilities. Model 

file size indicates the storage space 

required to store the model’s parameters 

and architecture. Minimizing the model file 

size is important for efficient deployment 

and management of the model, particularly 

on resource-constrained devices. 

 

4. Experimental Results 

Table 1 illustrates the performance 

comparison of various techniques, 

presenting reported results. Our solution 

consistently outperforms other methods in 

both accuracy and speed. Specifically, 

YOLOv5s demonstrates superior accuracy 

compared to other techniques, ranging 

from 2.1% to 20.7% when tested on 

images from the test set. In our test set, 

YOLOv5s achieves an impressive 94.3% 

accuracy with an inference time of 0.071 

seconds, surpassing the best compared 

method, YOLOv4, which attains 92.2% 

accuracy with an inference time of 0.094 

seconds. This makes YOLOv5s 2.1% more 

accurate and 0.023 seconds faster, with 

the model input size being the highest at 

640x640 pixels. On the other hand, SSD 

MobileNetV2, with the highest inference 

time of 0.042 seconds, exhibits a lower 

accuracy of only 73.6%. Despite its faster 

runtime, the model's input size is the 

lowest at 300x300 pixels. When compared 

with our YOLOv5 model, SSD 

MobileNetV2 is 20.7% less accurate and 

only 0.029 seconds faster. 

Model Input size Precision Recall F1score Accuracy Speed (ms) File Size (MB) 
EfficientDet Lite0 [30] 320x320 0.957 0.869 0.911 83.6 % 0.172 6.12 
EfficientDet Lite1 [30] 384x384 0.962 0.871 0.914 84.2 % 0.261 8.24 
EfficientDet Lite2 [30] 448x448 0.981 0.908 0.943 89.2 % 0.537 10.75 
SSD Mobilenetv2 [14] 300x300 0.946 0.768 0.848 73.6 % 0.042 7.21 

SSDLite MobileDet [16] 320x320 0.953 0.794 0.866 76.4 % 0.462 6.42 
YOLOv3 [17] 608x608 0.971 0.872 0.919 85.0 % 0.153 10.64 

YOLOv4 [15] [31] 640x640 0.986 0.934 0.959 92.2 % 0.094 9.85 
YOLOv5s [9] 640x640 0.991 0.952 0.971 94.3 % 0.071 8.04 

 

Table 1. Model comparison 
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Figure 8 showcases the testing setup at 

a real-time parking lot where the 

evaluation phase took place. The figure 

displays the availability of parking spaces, 

with spaces 1, 2, and 5 indicated as green 

color, signifying their availability. As 

shown, a car was about to enter parking 

space number 1    but was not fully inside, 

resulting in our  model detecting the 

license plate position outside the 

designated parking space. Parking spaces 

3, 4, and 6 already had cars parked shown 

in red color, and our model successfully 

tracked and assigned IDs to monitor their 

status. 

 

V. CONCLUSION 

 

In this study, we have successfully 

applied the YOLOv5s deep learning 

algorithm in conjunction with a proposed 

decision tree to develop a smart parking 

lot system capable of detecting the 

occupancy status of parking spaces and 

monitoring the position of parked cars. 

The YOLOv5s algorithm, known for its 

efficiency and accuracy in object detection, 

was chosen as the backbone of our system. 

We quantized the model to optimize its 

performance and facilitate its deployment 

on resource-constrained devices. The 

algorithm was successfully run on the 

Jetson Nano mainboard and the Google 

Coral Edge TPU accelerator, 

demonstrating its versatility across 

different hardware platforms.  

To make the final determination of the 

parking space status, we introduced a 

decision tree. This decision tree takes into 

account various factors, such as the 

presence of license plates, the position of 

the detected vehicles, and the defined 

parking space boundaries. By combining 

the outputs of the YOLOv5s algorithm and 

the decision tree, we were able to 

accurately assess the availability of 

parking  spaces in real-time. 

The results of our comparative analysis 

against other techniques clearly indicated 

the superiority of the proposed algorithm. 

Our approach achieved robustness in 

accurately detecting parking space 

occupancy, while also demonstrating 

faster processing times and a smaller 

Fig. 8. Real time testing results 
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model file size compared to alternative 

methods. This highlights the efficiency and 

effectiveness of our system in practical 

applications. 

Looking ahead, our future research 

endeavors will focus on 

exploring more optimized methods to 

further enhance the speed and reduce the 

size of the model without compromising its 

performance. This will involve 

investigating techniques such as model 

compression, knowledge distillation, and 

network architecture design. By 

continuously improving the efficiency and 

effectiveness of our system, we aim to 

provide even more reliable and efficient 

solutions for smart parking lot 

management. 
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