• Title/Summary/Keyword: LiCl-KCl

Search Result 220, Processing Time 0.029 seconds

Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. II. Experiment at 1023 K

  • Zhitkov, Alexander;Potapov, Alexei;Karimov, Kirill;Kholkina, Anna;Shishkin, Vladimir;Dedyukhin, Alexander;Zaykov, Yury
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.653-660
    • /
    • 2022
  • The interaction between UN and CdCl2 in the LiCl-KCl molten eutectic was studied at 1023 K. The chlorination was monitored by sampling and recording the redox potential of the medium. At 1023 K the chlorination of UN with cadmium chloride in the molten LiCl-KCl eutectic proceeds completely and results in the formation of uranium chlorides. The melts of the LiCl-KCl-UCl3 or LiCl-KCl-UCl4 compositions can be obtained by the end of experiment depending on the presence of metallic cadmium in the reaction zone. The higher the concentration of the chlorinating agent, the faster the reaction rate. At [CdCl2]/[UN] = 1.65 (10% excess) the reaction proceeds to completion in about 7.5 h. At [CdCl2]/[UN] = 7 the complete chlorination takes 2.5-3 h.

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt

  • Samanta, Nibedita;Chandra, Manish;Maji, S.;Venkatesh, P.;Annapoorani, S.;Jain, Ashish
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.279-291
    • /
    • 2022
  • In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.

Reductive reaction of U and Lanthanides using Cd-Li metal in LiCl-KCl Molten Salt (LiCl-KCl 용융염에서 Cd-Li 금속을 이용한 U 및 란탄족의 환원반응)

  • 우문식;이병직;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.339-339
    • /
    • 2004
  • 원자로를 이용하여 장수명핵종(long lived nucleus)을 소멸처리하는 과정에서 초우라늄(TRU, transuranium)과 희토류(RE, rare earth) 금속에 포함되어 있는 소량의 핵분열성(fissile) 물질인 우라늄을 제거할 필요가 있다. 본 실험은 LiCl-KCl 용융염계에서 전해제련법(Electrowinning)을 이용하여 용융염욕에 존재하는 우라늄을 제거하기 위하여 필요한 Cd-Li 양전극 물질을 제조하였고, 제조된 금속을 이용하여 우라늄 및 란탄족(Dy, Ce, Y, Nd, Gd) 금속의 환원 특성을 파악하였다.(중략)

  • PDF

Electric Conductance of Dilute Solutions of Lithium, Sodium and Potassium Chloride in Isopropanol_Water Mixtures (이소프로판올-물 混合溶媒中의 리튬, 나트륨 및 칼륨 鹽化沕 溶液의 電導度)

  • Byung-Rin Cho;Yong-Ja Lee;Jae-Bin Kim
    • Journal of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 1976
  • The conductances of dilute solutions of LiCl, NaCl and KCl in a series of isopropanol-water mixtures were determined at $30^{\circ}C$. The values of equivalent conductance agreed well with Debye-Huckel-Onsager equation and the limiting equivalent conductance was greatly reduced as the isopropanol content of the solvent was increased in accord with predictions based on solvent viscosity and dielectric properties. Also, the limiting equivalent conductance increased in sequence ${\Lambda}_{0,LiCl} < {\Lambda}_{0,NaCl} < {\Lambda}_{0,KCl} in 0.0, 0.1 and 0.2 mole fraction isopropanol, but {\Lambda}_{0,LiCl} < {\Lambda}_{0,KCl} < {\Lambda}_{0,NaCl} in 0.3 mole fraction ispropanol. The maximum Walden product, {\Lambda}_{0{\eta}0}$ was found in 0.1 mole fraction isopropanol for all electrolytes.

  • PDF

Actinide Drawdown From LiCl-KCl Eutectic Salt via Galvanic/chemical Reactions Using Rare Earth Metals

  • Yoon, Dalsung;Paek, Seungwoo;Jang, Jun-Hyuk;Shim, Joonbo;Lee, Sung-Jai
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.3
    • /
    • pp.373-382
    • /
    • 2020
  • This study proposes a method of separating uranium (U) and minor actinides from rare earth (RE) elements in the LiCl-KCl salt system. Several RE metals were used to reduce UCl3 and MgCl2 from the eutectic LiCl-KCl salt systems. Five experiments were performed on drawdown U and plutonium (Pu) surrogate elements from RECl3-enriched LiCl-KCl salt systems at 773 K. Via the introduction of RE metals into the salt system, it was observed that the UCl3 concentration can be lowered below 100 ppm. In addition, UCl3 was reduced into a powdery form that easily settled at the bottom and was successfully collected by a salt distillation operation. When the RE metals come into contact with a metallic structure, a galvanic interaction occurs dominantly, seemingly accelerating the U recovery reaction. These results elucidate the development of an effective and simple process that selectively removes actinides from electrorefining salt, thus contributing to the minimization of the influx of actinides into the nuclear fuel waste stream.

Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts

  • Mullabaev, A.R.;Kovrov, V.A.;Kholkina, A.S.;Zaikov, Yu.P.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.965-974
    • /
    • 2022
  • Platinum anodes are widely used for metal oxides reduction in LiCl-Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO-Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO-Li2O ceramics were studied in (80 mol.%) LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl-Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl-KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550℃ and at 3.04 V and 650℃. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650℃ reached about 96%. The anode process on the NiO-Li2O electrode in the LiCl-KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO-Li2O is close to 100%. The NiO-Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel.

Density of Molten Salt Mixtures of Eutectic LiCl-KCl Containing UCl3, CeCl3, or LaCl3

  • Zhang, C.;Simpson, M.F.
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2017
  • Densities of molten salt mixtures of eutectic LiCl-KCl with $UCl_3$, $CeCl_3$, or $LaCl_3$ at various concentrations (up to 13 wt%) were measured using a liquid surface displacement probe. Linear relationships between the mixture density and the concentration of the added salt were observed. For $LaCl_3$ and $CeCl_3$, the measured densities were significantly higher than those previously reported from Archimedes' method. In the case of $LiCl-KCl-UCl_3$, the data fit the ideal mixture density model very well. For the other salts, the measured densities exceeded the ideal model prediction by about 2%.

Synthesis of $CaCrO_4$Powders for the Cathode Material of Thermal Battery by GNP and Electrochemical Properties of Ca/LiCl-KCl/$CaCrO_4$Thermal Battery System (GNP 방법에 의한 Thermal Battery용 양극 재료 $CaCrO_4$분말 합성 및 Ca/LiCl-KCl/$CaCrO_4$전지계의 전기 화학적인 특성 평가)

  • 이현주;김영석;김선재;이창규;김홍회;김길무
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 2001
  • Ca/LiCl-KCl/CaCrO$_4$열 전지계의 양극재료로서 BCT(Body-Centered Tetragonal) 결정구조를 갖는 CaCrO$_4$분말을 GNP로 합성하고, SEM, TEM, XRD를 이용하여 그 미세구조를 분석하였다. GNP 공정에 의한 CaCrO$_4$분말은 단일상으로 0.5$mu extrm{m}$ 이하의 입자 크기를 가지며 균일하게 분포한 반면, 기존의 분말 혼합법은 높은 하수 온도 및 장시간의 하소 조건을 필요하므로 미세한 분말 합성이 어렵고 pellet 형태로 만들었을 때 GNP 분말에 비해 비표면적이 현저하게 작기 때문에 전극 재료로써 유리하지 못하다. Ca/LiCl-KCl/CaCrO$_4$계의 전기 화학적인 특성을 평가해본 결과 전지셀을 Ca/DEB(LiCl-KCl+CaCrO$_4$+SiO$_2$)와 같은 DEB 형태로 만들었을 때 $600^{\circ}C$의 온도에서 2.0 V이상 (<100 mA/㎤)의 안정한 전압이 5분 이상 유지되었다. 그러나 3층 전극 셀(Ca/LiCl/KCl/ CaCrO$_4$)에서는 동일한 온도에서 2.0 V이상 (<100 mA/㎤)의 전압이 7분 이상 유지되었으나 불안정한 전압 변동 및 낮은 peak voltage로 인해 DEB 셀의 전지 특성이 더 우수한 것으로 생각된다. 양극 재료의 제조 방법의 관점에서 볼 때, 동일한 DEB(Depolarizer : Electrolyte : Binder=25 : 70 : 5 wt%) 조성의 셀 구성시, GNP 분말은 분말 혼합법에 의한 분말보다 반응 표면적이 훨씬 크기 때문에 GNP 양극 활 물질의 DEB 셀에서의 전지 수명이 더 길었다.

  • PDF

Electrochemical Behavior of Sm(III) on the Aluminium-Gallium Alloy Electrode in LiCl-KCl Eutectic

  • Ye, Chang-Mei;Jiang, Shi-Lin;Liu, Ya-Lan;Xu, Kai;Yang, Shao-Hua;Chang, Ke-Ke;Ren, Hao;Chai, Zhi-Fang;Shi, Wei-Qun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.2
    • /
    • pp.161-176
    • /
    • 2021
  • In this study, the electrochemical behavior of Sm on the binary liquid Al-Ga cathode in the LiCl-KCl molten salt system is investigated. First, the co-reduction process of Sm(III)-Al(III), Sm(III)-Ga(III), and Sm(III)-Ga(III)-Al(III) on the W electrode (inert) were studied using cyclic voltammetry (CV), square-wave voltammetry (SWV) and open circuit potential (OCP) methods, respectively. It was identified that Sm(III) can be co-reduced with Al(III) or Ga(III) to form AlzSmy or GaxSmy intermetallic compounds. Subsequently, the under-potential deposition of Sm(III) at the Al, Ga, and Al-Ga active cathode was performed to confirm the formation of Sm-based intermetallic compounds. The X-ray diffraction (XRD) and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) analyses indicated that Ga3Sm and Ga6Sm intermetallic compounds were formed on the Mo grid electrode (inert) during the potentiostatic electrolysis in LiCl-KCl-SmCl3-AlCl3-GaCl3 melt, while only Ga6Sm intermetallic compound was generated on the Al-Ga alloy electrode during the galvanostatic electrolysis in LiCl-KCl-SmCl3 melt. The electrolysis results revealed that the interaction between Sm and Ga was predominant in the Al-Ga alloy electrode, with Al only acting as an additive to lower the melting point.