Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00934

Studying Thermochemical Conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl Eutectic Melt  

Samanta, Nibedita (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research)
Chandra, Manish (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research)
Maji, S. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research)
Venkatesh, P. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research)
Annapoorani, S. (Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research)
Jain, Ashish (Homi Bhabha National Institute, Indira Gandhi Centre for Atomic Research)
Publication Information
Journal of Electrochemical Science and Technology / v.13, no.2, 2022 , pp. 279-291 More about this Journal
Abstract
In this report the thermochemical conversion of Sm2O3 to SmCl3 using AlCl3 in LiCl-KCl melt at 773 K is discussed. The final product was a mixture of SmCl3, Al2O3, unreacted Sm2O3 and AlCl3 in the chloride melt. The electrochemical attributes of the mixture was analyzed with cyclic voltammetry (CV) and square wave voltammetry (SWV). The crystallographic phases of the mixture were studied with X-ray diffraction (XRD) technique. The major chemical conversion was optimized by varying the effective parameters, such as concentrations of AlCl3, duration of reaction and the amount of LiCl-KCl salt. The extent of conversion and qualitative assessment of efficiency of the present protocol were evaluated with fluorescence spectroscopy, UV-Vis spectrophotometry and inductively coupled plasma atomic emission spectroscopy (ICP-AES) studies of the mixture. Thus, a critical assessment of the thermochemical conversion efficiency was accomplished by analysing the amount of SmCl3 in LiCl-KCl melt. In the process, a conversion efficiency of 95% was achieved by doubling the stoichiometric requirement of AlCl3 in 50 g of LiCl-KCl salt. The conversion reaction was found to be very fast as the reaction reached equilibrium in 15 min.
Keywords
Molten LiCl-KCl; $Sm_2O_3$; Voltammetry; $AlCl_3$; Spectrophotometry;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A.V. Novoselova, V.V. Smolenski, A.L. Bovet, Russ. Metall. (Met.), 2021, 2021(2), 165-169.   DOI
2 K. Liu, Y.L. Liu, L.Y. Yuan, H. He, Z.Y. Yang, X.L. Zhao, Z.F. Chai, W.Q. Shei, Electrochim. Acta, 2014, 129, 401-409.   DOI
3 M. Martincic, C. Frontera, E. Pach, B. Ballesteros, G. Tobias, Polyhedron., 2016, 116, 116-121.   DOI
4 G.N. Papatheodorou, G.H. Kucera, Inorg. Chem., 1979, 18(2), 385-389.   DOI
5 Y. Liu, K. Liu, L. Luo, L. Yuan, Z. Chai, W. Shi, Electrochim. Acta, 2018, 275, 100- 109.   DOI
6 K. Liu, Y.L. Liu, L.Y. Yuan, X.L. Zhao, Z.F. Chai, W.Q. Shei, Electrochim. Acta, 2013, 109, 732-740.   DOI
7 L.Wang, Y.L. Liu, K. Liu, S.L. Tang, L.Y. Yuan, L.L. Su, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2014, 147, 385-391.   DOI
8 H. Tang, Y.D. Yan, W. Han, M.L. Zhang, X. Liu, Y.L. Xue, W. Han, Z.J. Zhang, Electrochim. Acta, 2013, 88, 457-462.   DOI
9 Y.D. Yan, H. Tang, M.L. Zhang, Y. Xue, W. Han, D.X. Cao, Z.J. Zhang, Electrochim. Acta, 2012, 59, 531-537.   DOI
10 Y. Sakamura, T. Inoue, T. Iwai, H. Moriyama, J. Nucl. Mater., 2005, 340(1), 39-51.   DOI
11 C.W. Bale, E. Belisle, P. Chartrand, S.A. Decterov, G. Eriksson, A.E. Gheribi, K. Hack, I.H. Jung, Y.B. Kang, J. Melancon, A.D. Pelton, S. Petersen, C. Robelin, J. Sangster, P. Spencer, MA. Van Ende, Calphad, 2016, 54, 35-53.   DOI
12 Y. Castrillejo, P. Fernandez, J. Medinab, P. Hernandezc, E. Barrado, Electrochim. Acta, 2011, 56(24), 8638-8644.   DOI
13 C.M.Walter, G.H. Golden, N.J. Olson, U-Pu-Zr Metal Alloy: A Potential Fuel for LMFBRs, Argonne National Laboratory, ANL-76-28, 1975.
14 Y.C. Liu, Y.L. Liu, Y. Zhao, Z. Liu, T. Zhou, Q. Zou, X. Zeng, Y.K. Zhong, M. Li, Z.X. Sun, W.Q. Shi, J. Nucl. Mater., 2020, 532, 152049.   DOI
15 M.A. Williamson, J.L. Willit, Nucl. Eng. Technol., 2011, 43(4), 329-334.   DOI
16 Y.D. Yan, X. Li, M.L. Zhang, Y. Xue, H. Tang, W. Han, Z.J. Zhang, J. Electrochem. Soc., 2012, 159(11), D649.   DOI
17 Y. Xue, X. Yang, Y. Yan, M. Zhang, J. Debin, L. Enyu, W. Han, Acta Metall. Sin., 2016, 52(7), 883-889.
18 Y.L. Liu, Y.D. Yan, W. Han, M.L. Zhang, L.Y. Yuan, K. Liu, G.A. Ye, H. He, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2013, 114, 180-188.   DOI
19 Y.L. Liu, G.A. Ye, L.Y. Yuan, K. Liu, Y.X. Feng, Z.J. Li, Z.F. Chai, WQ. Shi, Electrochim. Acta, 2015, 158, 277-286.   DOI
20 Y.L. Liu, L.X. Luo, N. Liu, B.L. Yao, K. Liu, L.Y. Yuan, Z.F. Chai, W.Q. Shi, J. Nucl. Mater., 2018, 508, 68-73.
21 S. Sohn, J. Park, P.H. Kim, I.S. Hwang, Procedia Chem., 2016, 21, 401-408.   DOI
22 J.E. Battles, W.E. Miller, E.C. Gay, Pyrometallurgical processing of Integral fast reactor metal fuels, Argonne National Laboratory, ANL/CP-70796, 1991.
23 C.E. Till, Y.I. Chang, Plentiful Energy: The Story of the Integral Fast Reactor, CreateSpace, 2011.
24 M.R. Shaltry, P.K. Tripathy, T.S. Yoo, G.L. Fredrickson, J. Electroanal. Chem., 2021, 899, 115689.   DOI
25 S.V. Perumal, B.P. Reddy, G. Ravishankar, K. Nagarajan, Radiochim. Acta, 2015, 103(4), 287-292.   DOI
26 Y. Sakamura, M. Iizuka, Electrochim. Acta, 2016, 189, 74-82.   DOI
27 A.J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd Ed, John Wiley and Sons, Inc., 2001.
28 C.E. Stevenson, The EBR-II Fuel Cycle Story, American Nuclear Society, 1987.
29 J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, E.L. Carls, Prog. Nucl. Energy, 1997, 31(1-2), 131-140.   DOI
30 A.L. Nichols, D.L. Aldama, M. Verpelli, Handbook of Nuclear Data for safeguards, International Atomic Energy Agency, 2007.
31 G. Cordoba, C. Caravaca, J. Electroanal. Chem., 2004, 572(1), 145-151.   DOI
32 J.G. Osteryoung, R.A. Osteryoung, Anal. Chem., 1985, 57(1), 101-110.   DOI
33 L. Ramaley, M.S. Kraus, Anal. Chem. 1969, 41(11), 1362-1365.   DOI
34 P. Chamelot, B. Lafage, P. Taxil, Electrochim. Acta, 1997, 43(5-6), 607-616.   DOI
35 H.J. Im, Y.K. Jeong, Y.H. Cho, J.G. Kang, K. Song, Electrochemistry, 2009, 77(8), 670-672.   DOI
36 Y.L. Liu, L.Y. Yuan, K. Liu, G.A. Ye, M.L. Zhang, H. He, H.B. Tang, R.S. Lin, Z.F. Chai, W.Q. Shi, Electrochim. Acta, 2014, 120, 369-378.   DOI
37 Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellis Horwood Ltd., 1985.
38 H.R. Shih, Y.S. Chang, Materials, 2017, 10(7), 779.   DOI
39 Y. Feng, Y. Dai, Y. Liu, B. Yang, J. Vac. Sci. Technol., 2009, 29(3), 336-339.   DOI
40 Y.I. Chang, Nucl. Technol., 1989, 88(2), 129-138.   DOI
41 T.B. Joseph, N. Sanil, K.S. Mohandas, K. Nagarajan, J. Electrochem. Soc., 2015, 162(6), E51.   DOI
42 T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashiz, M. Tokiwai, J. Nucl. Sci.Technol., 1997, 34(4), 384-393.   DOI
43 G.L. Hofman, L.C. Walters, T.H. Bauer, Prog. Nucl. Energy., 1997, 31(1-2), 83-110.   DOI
44 Y.I. Chang, Nucl. Eng. Technol., 2007, 39(3), 161-170.   DOI
45 J.P. Ackerman, Ind. Eng. Chem. Res., 1991, 30(1), 141-145.   DOI
46 J.P. Ackerman, T.T. Johnson, L.S.H. Chow, E.L. Carls, W.H. Hannum, J.J. Laidler, Prog. Nucl. Energy, 1997, 31(1-2), 141-154.   DOI