Browse > Article
http://dx.doi.org/10.1016/j.net.2021.08.034

Anode processes on Pt and ceramic anodes in chloride and oxide-chloride melts  

Mullabaev, A.R. (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences)
Kovrov, V.A. (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences)
Kholkina, A.S. (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences)
Zaikov, Yu.P. (Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences)
Publication Information
Nuclear Engineering and Technology / v.54, no.3, 2022 , pp. 965-974 More about this Journal
Abstract
Platinum anodes are widely used for metal oxides reduction in LiCl-Li2O, however high-cost and low-corrosion resistance hinder their implementation. NiO-Li2O ceramics is an alternative corrosion resistant anode material. Anode processes on platinum and NiO-Li2O ceramics were studied in (80 mol.%) LiCl-(20mol.%)KCl and (80 mol.%)LiCl-(20 mol.%)KCl-Li2O melts by cyclic voltammetry, potentiostatic and galvanostatic electrolysis. Experiments performed in the LiCl-KCl melt without Li2O illustrate that a Pt anode dissolution causes the Pt2+ ions formation at 3.14 V and 550℃ and at 3.04 V and 650℃. A two-stage Pt oxidation was observed in the melts with the Li2O at 2.40 ÷ 2.43 V, which resulted in the Li2PtO3 formation. Oxygen current efficiency of the Pt anode at 2.8 V and 650℃ reached about 96%. The anode process on the NiO-Li2O electrode in the LiCl-KCl melt without Li2O proceeds at the potentials more positive than 3.1 V and results in the electrochemical decomposition of ceramic electrode to NiO and O2. Oxygen current efficiency on NiO-Li2O is close to 100%. The NiO-Li2O ceramic anode demonstrated good electrochemical characteristics during the galvanostatic electrolysis at 0.25 A/cm2 for 35 h and may be successfully used for pyrochemical treating of spent nuclear fuel.
Keywords
Electrolysis; Pt anode; Ceramic anode; LiCl; $Li_2O$; Spent nuclear fuel;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Frederic Lantelme Henri Groult, Molten Salts Chemistry, Elsevier, 2013.
2 E.-Y. Choi, J.W. Lee, J.J. Park, J.-M. Hur, J.-K. Kim, K.Y. Jung, S.M. Jeong, Electrochemical reduction behavior of a highly porous SIMFUEL particle in a LiCl molten salt, Chem. Eng. J. 207-208 (2012) 514-520, https://doi.org/10.1016/j.cej.2012.06.161.   DOI
3 R. Kasuya, T. Miki, Y. Tai, Preparation of Li2PtO3 and its dissolution properties in hydrochloric acid, J. Ceram. Soc. Jpn. 121 (2013) 261-264, https://doi.org/10.2109/jcersj2.121.261, 2013.   DOI
4 A.B. Salyulev, A.V. Shishkin, V. Yu. Shishkin, Yu.P. Zaikov, Distillation of lithium chloride from the products of uranium dioxide metalization, Atom. Energy 126 (2019) 226-229, https://doi.org/10.1007/s10512-019-00541-1.   DOI
5 Yu.P. Zaikov, A.P. Khramov, L.E. Ivanovskii, Prospects for use of oxide composites as nonsacrificial anodes in high-temperature electrolysis of oxidehalide salt melts, Russ. J. Electrochem. 33 (1997) 1306-1310.
6 S.-W. Kim, S.-K. Lee, H.W. Kang, E.-Y. Choi, W. Park, S.-S. Hong, S.-C. Oh, J.-M.Hur Electrochemical properties of noble metal anodes for electrolytic reduction of uranium oxide, J. Radioanal. Nucl. Chem. 311 (2017) 809-814, https://doi.org/10.1007/s10967-016-5107-8.   DOI
7 Y. Sakamura, M. Kurata, T. Inoue, Electrochemical reduction of UO2 in molten CaCl2 or LiCl, J. Electrochem. Soc. (2006) D31-D39, https://doi.org/10.1149/1.2160430.   DOI
8 J.-M. Hur, J.-S. Cha, E.-Y. Choi, Can carbon Be an anode for electrochemical reduction in a LiCl-Li2O molten salt, ECS Electrochemistry Letters 3 (2014), https://doi.org/10.1149/2.0071410eel. E5-E7.   DOI
9 S.P. Ray, in: P.A. Warrendale (Ed.), Inert Anodes for Hall Cell, Light Metals, TMS-AIME, 1986, pp. 287-298.
10 Huayi Yina, Lili Gaoa, Hua Zhua, Xuhui Maoa, Fuxing Gana, Dihua Wang, On the development of metallic inert anode for molten CaCl2-CaO System, Electrochim. Acta 56 (2011) 3296-3302, https://doi.org/10.1016/j.electacta.2011.01.026.   DOI
11 B.H. Park, I.W. Lee, C.-S. Seo, Electrolytic reduc-tion behavior of U3O8 in a molten LiCl-Li2O salt, Chem. Eng. Sci. 63 (2008) 3485-3492, https://doi.org/10.1016/j.ces.2008.04.021.   DOI
12 S.D. Herrmann, P.K. Tripathy, S.M. Frank, J.A. King, Comparative study of monolithic platinum and iridium as oxygen-evolving anodes during the electrolytic reduction of uranium oxide in a molten LiCl-Li2O electrolyte, J. Appl. Electrochem. 49 (2019) 379-388, https://doi.org/10.1007/s10800-019-01287-1.   DOI
13 T. Biju Joseph, N. Sanil, L. Shakila, K.S. Mohan-das, K. Nagarajan, A cyclic voltammetry study of the electrochemical behavior of platinum in oxide-ion rich LiCl melts, Electrochim. Acta 139 (2014) 394-400, https://doi.org/10.1016/j.electacta.2009.05.080.   DOI
14 Yoshiharu Sakamura, Effect of alkali and alkaline-earth chloride addition on electrolytic reduction of UO2 in LiCl salt bath, J. Nucl. Mater. 412 (2011) 177-183, https://doi.org/10.1016/j.jnucmat.2011.02.055.   DOI
15 A. Zhitkov, A. Potapov, K. Karimov, V. Shishkin, A. Dedyukhin, Y. Zaykov, Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. I. Experiment at 773 K, Nucl. Eng. Technol. 52 (2020) 123-134, https://doi.org/10.1016/j.net.2019.07.006.   DOI
16 S.-W. Kim, M.K. Jeon, H.W. Kang, Sang-Kwon Lee, E.-Y. Choi, W. Park, S.-S. Hong, S.-Ch. Oh, J.-M. Hur, Carbon anode with repeatable use of LiCl molten salt for electrolytic reduction in pyroprocessing, J. Radioanal. Nucl. Chem. 310 (2016) 463-467, https://doi.org/10.1007/s10967-016-4786-5.   DOI
17 V. Chapman, B.J. Welch, M. Skyllas-Kazacos, Anodic behaviour of oxidized NiFe alloys in cryolite-alumina melts, Electrochim. Acta 56 (2011) 1227-1238, https://doi.org/10.1016/j.electacta.2010.10.095.   DOI
18 S.M. Jeong, H.-S. Shin, S.-H. Cho, J.-M. Hur, H.S. Lee, Electrochemical behavior of a platinum anode for reduction of uranium oxide in a LiCl molten salt, Electrochim. Acta 54 (2009) 6335-6340, https://doi.org/10.1016/j.electacta.2009.05.080.   DOI
19 P.A. Arkhipov, A.N. Baraboshkin, Z.I. Valeev, Z.S. Martemyanova, Molybdenum electrodeposition from low-melting chloride baths, Soviet Electrochemistry, 1388-1392 (1990) 26.
20 Yu.P. Zajkov, A. B Dubovtsev, V.P. Batukhtin, A.P. Khramov, L.E. Ivanovskij, Electrolysis with oxide anodes in chloride-oxide melt, Rasplavy 2 (1995) 41-46.
21 A.B. Dubovtsev, Yu.P. Zaikov, I.V. Murygin, L.E. Ivanovskij, Behaviour of the oxide anodes at the electrolysis chloride-oxide melts. 1. Interaction oxide electrodes with melt, Rasplavy 1 (1992) 35-40.
22 A.B. Dubovtsev, Yu.P. Zajkov, L.I. Ivanovskij, Equilibrium potentials of oxide electrode in CaCl2-CaO melt, Rasplavy 1 (1994) 48-53.
23 Y. Sakamura, M. Iizuka, Applicability of nickel ferrite anode to electrolytic reduction of metal oxides in LiCl-Li2O melt at 923 K, Electrochim. Acta 189 (2016) 74-82, https://doi.org/10.1016/j.electacta.2015.12.086.   DOI
24 A.B. Dubovtsev, Yu.P. Zaikov, I.V. Murygin, L.E. Ivanovskij, Behaviour of the oxide anodes at the electrolysis chloride-oxide melts. 2. Investigation of anodic process on the ceramic electrode, Rasplavy 1 (1992) 41-48.
25 S.-W. Kim, H.W. Kang, M.K. Jeon, S.-K. Lee, E.-Y. Choi, W. Park, S.-S. Hong, S.-Ch. Oh, J.-M. Hur chemical stability of conductive ceramic anodes in LiCl-Li2O molten salt for electrolytic reduction in pyroprocessing, Nuclear Engineering and Technology 48 (2016) 997-1001, https://doi.org/10.1016/j.net.2016.03.002.   DOI
26 A. Suzdaltsev, A. Khramov, V. Kovrov, O. Limanovskaya, V. Nekrasov, Y. Zaikov, Voltammetric and chronopotentiometric study of nonstationary processes at the oxygen-evolving anodes in KF-NaF-AlF3-Al2O3 melt, Mater. Sci. Forum 844 (2016) 19-26. https://doi.org/10.4028/www.scientific.net/MSF.844.19.   DOI
27 A. Mullabaev, O. Tkacheva, V. Shishkin, V. Kovrov, Y. Zaikov, L. Sukhanov, Y. Mochalov, Properties of the LiCl-KCl-Li2O system as operating medium for pyro-chemical reprocessing of spent nuclear fuel, J. Nucl. Mater. 500 (2018) 235-241, https://doi.org/10.1016/j.jnucmat.2018.01.004.   DOI
28 Yu.R. Khalimullina, Yu.P. Zaikov, P.A. Arkhipov, V.V. Ashikhin, G.V. Skopov, A.S. Kholkina, N.G. Molchanova, Thermodynamic characteristics of the Pb-Bi alloys in the KCl-PbCl2 melt, Russ. J. Non-Ferrous Metals 52 (2011) 197-204, https://doi.org/10.3103/S1067821211030126.   DOI
29 A. Roine, HSC Chemistry® [Software], Outotec, Pori 2018. Software available at, www.outotec.com/HSC.