• Title/Summary/Keyword: Li-air battery cathode

Search Result 24, Processing Time 0.025 seconds

Ionic Liquid-based Electrolytes for Li Metal/Air Batteries: A Review of Materials and the New 'LABOHR' Flow Cell Concept

  • Bresser, Dominic;Paillard, Elie;Passerini, Stefano
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.37-44
    • /
    • 2014
  • The $Li-O_2$ battery has been attracting much attention recently, due to its very high theoretical capacity compared with Li-ion chemistries. Nevertheless, several studies within the last few years revealed that Li-ion derived electrolytes based on alkyl carbonate solvents, which have been commonly used in the last 27 years, are irreversibly consumed at the $O_2$ electrode. Accordingly, more stable electrolytes are required capable to operate with both the Li metal anode and the $O_2$ cathode. Thus, due to their favorable properties such as non volatility, chemical inertia, and favorable behavior toward the Li metal electrode, ionic liquid-based electrolytes have gathered increasing attention from the scientific community for its application in $Li-O_2$ batteries. However, the scale-up of Li-$O_2$ technology to real application requires solving the mass transport limitation, especially for supplying oxygen to the cathode. Hence, the 'LABOHR' project proposes the introduction of a flooded cathode configuration and the circulation of the electrolyte, which is then used as an oxygen carrier from an external $O_2$ harvesting device to the cathode for freeing the system from diffusion limitation.

Investigation of LiO2 Adsorption on LaB1-xB'xO3(001) for Li-Air Battery Applications: A Density Functional Theory Study

  • Kwon, Hyunguk;Han, Jeong Woo
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.3
    • /
    • pp.306-311
    • /
    • 2016
  • Li-air batteries have received much attention due to their superior theoretical energy density. However, their sluggish kinetics on the cathode side is considered the main barrier to high performance. The rational design of electrode catalysts with high activity is therefore an important challenge. To solve this issue, we performed density functional theory (DFT) calculations to analyze the adsorption behavior of the $LiO_2$ molecule, which is considered to be a key intermediate in both the Li-oxygen reduction reaction (ORR) and the evolution reaction (OER). Specifically, to use the activity descriptor approach, the $LiO_2$ adsorption energy, which has previously been demonstrated to be a reliable descriptor of the cathode reaction in Li-air batteries, was calculated on $LaB_{1-x}B^{\prime}_xO_3$(001) (B, B' = Mn, Fe, Co, and Ni, x = 0.0, 0.5). Our fast screening results showed that $LaMnO_3$, $LaMn_{0.5}Fe_{0.5}O_3$, or $LaFeO_3$ would be good candidate catalysts. We believe that our results will provide a way to more efficiently develop new cathode materials for Li-air batteries.

Synthesis of a new class of carbon nanomaterials by solution plasma processing for use as air cathodes in Li-Air batteries

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.833-837
    • /
    • 2015
  • Li-air batteries have a promising future for because of their high energy density, which could theoretically be equal to that of gasoline. However, substantial Li-air cell performance limitations exist, which are related to the air cathode. The cell discharge products are deposited on the surfaces of the porous carbon materials in the air electrode, which blocks oxygen from diffusing to the reaction sites. Hence, the real capacity of a Li-air battery is determined by the carbon air electrode, especially by the pore volume available for the deposition of the discharged products. In this study, a simple and fast method is reported for the large-scale synthesis of carbon nanoballs (CNBs) consisting of a highly mesoporous structure for Li-air battery cathodes. The CNBs were synthesized by the solution plasma process from benzene solution, without the need for a graphite electrode for carbon growth. The CNBs so formed were then annealed to improve their electrical conductivity. Structural characterization revealed that the CNBs exhibited both an pore structure and high conductivity.

Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.838-842
    • /
    • 2015
  • The Li-air battery is a promising candidate for the most energy-dense electrochemical power source because it has 5 to 10 times greater energy storage capacity than that of Li-ion batteries. However, the Li-air cell performance falls short of the theoretical estimate, primarily because the discharge terminates well before the pore volume of the air electrode is completely filled with lithium oxides. Therefore, the structure of carbon used in the air electrode is a critical factor that affects the performance of Li-air batteries. In a previous study, we reported a new class of carbon nanomaterial, named carbon nanoballs (CNBs), consisting of highly mesoporous spheres. Structural characterization revealed that the synthesized CNBs have excellent a meso-macro hierarchical pore structure, with an average diameter greater than 10 nm and a total pore volume more than $1.00cm^3g^{-1}$. In this study, CNBs are applied in an actual Li-air battery to evaluate the electrochemical performance. The formation mechanism and electrochemical performance of the CNBs are discussed in detail.

Changes in the Shape and Properties of the Precursor of the Rich-Ni Cathode Materials by Ammonia Concentration (암모니아 농도에 따른 Rich-Ni 양극 소재의 전구체 형태와 특성 변화)

  • Park, Seonhye;Hong, Soonhyun;Jeon, Hyeonggwon;Kim, Chunjoong
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.636-640
    • /
    • 2020
  • Due to the serious air pollution problem, interest in eco-friendly vehicles is increasing. Solving the problem of pollution will necessitate the securing of high energy storage technology for batteries, the driving force of eco-friendly vehicles. The reason for the continuing interest in the transition metal oxide LiMO2 as a cathode material with a layered structure is that lithium ions reveal high mobility in two-dimensional space. Therefore, it is important to investigate the effective intercalation and deintercalation pathways of Li+, which affect battery capacity, to understand the internal structure of the cathode particle and its effect on the electrochemical performance. In this study, for the cathode material, high nickel Ni0.8Co0.1Mn0.1(OH)2 precursor is synthesized by controlling the ammonia concentration. Thereafter, the shape of the primary particles of the precursor is investigated through SEM analysis; X-ray diffraction analysis is also performed. The electrochemical properties of LiNi0.8Co0.1Mn0.1O2 are evaluated after heat treatment.

Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery (고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석)

  • Park, Inyeong;Jang, Jaeyong;Lim, Dongwook;Kim, Taewoo;Shim, Sang Eun;Park, Seok Hoon;Baeck, Sung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

The Electrochemical Properties of SnO2 as Cathodes for Lithium Air Batteries

  • Lee, Yoon-Ho;Park, Heai-Ku
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.164-171
    • /
    • 2019
  • Nano-sized $SnO_2$ powders were synthesized via a solvent thermal reaction using $SnClO_4$, NaOH, and ethylene glycol at $150^{\circ}C$. TGA, SEM, FT-IR, XRD, and Potentiostat/Galvanostat were employed to investigate the chemical and electrochemical characteristics of the synthesized $SnO_2$. The structure of $SnO_2$ was amorphous, and when heat treated at $500^{\circ}C$, it was transformed into a crystalline structure. The morphology obtained by SEM micrographs of the as-synthesized $SnO_2$ showed powder features that had diameters ranging 100 to 200 nm. The electrochemical performance of the crystalline $SnO_2$ as a Li-air battery cathode was better than that of the amorphous $SnO_2$. The specific capacity of the crystalline $SnO_2$ was at least 350 mAh/g at 10 mA/g discharge rate. However, there was some capacity loss of all the cells during the consecutive cycles. Keywords : Lithium-Air Battery.

The Charge/discharge Properties of $ Li_xNi_{2-x}O_2$Cathode for Lithium Rechargeable Battery (리튬 2차전지용$ Li_xNi_{2-x}O_2$ 정극의 충방전 특성)

  • 김철중;전대규;이하니;박영철;김주승;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.378-381
    • /
    • 1996
  • This study is to research Li$_{x}$Ni$_{2-x}$O$_2$ cathode for lithium chargeable battery. We investigated morphology and cell resistance, capacity and Ah efficiency of Li$_{x}$Ni$_{2-x}$O$_2$/Li cells using Li$_{x}$Ni$_{2-x}$O$_2$ prepared under air and $O_2$ flow. The (003)I/(104)I intensity ratio was 1.4. The cell resistance was increased with increasing Li in Li$_{x}$Ni$_{2-x}$O$_2$. The discharge capacity based on Li$_{x}$Ni$_{2-x}$O$_2$of 1st and 15th cycles was 135㎃h/g and 108㎃h/g, respectively. The Li$_{x}$Ni$_{2-x}$O$_2$ prepared with hexan under $O_2$ flow had a good properties. properties. properties.

  • PDF

Electrochemical Performances of Lithium-air Cell with Carbon Materials

  • Park, C.K.;Park, S.B.;Lee, S.Y.;Lee, H.;Jang, H.;Cho, W.I.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3221-3224
    • /
    • 2010
  • This study investigates the requirements of lithium-air cathodes, which directly influence discharge capacity. The cathodes of Li-air cell are made by using five different carbon materials, such as Ketjen black EC600JD, Super P, Ketjen black EC300JD, Denka black, and Ensaco 250G. The Ketjen black EC600JD provides discharge capacity of 2600 mAh/g per carbon weight, while that of Ensaco 250G shows only 579 mAh/g. To figure out the differences of discharge capacity from carbon materials, their surface area and pore volume are analyzed. These are found out to be the critical factors in determining discharge capacity. Furthermore, carbon loading on Ni foam and amounts of electrolyte are significant factors that affect discharge capacity. In order to investigate catalyst effect, electrolytic manganese dioxide (EMD) is incorporated and delivered 4307 mAh/g per carbon weight. This infers that EMD facilitates to break $O_2$ interactions and leads to enhance discharge capacity.

Lithium Air Battery: Alternate Energy Resource for the Future

  • Zahoor, Awan;Christy, Maria;Hwang, Yun-Ju;Nahm, Kee-Suk
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-23
    • /
    • 2012
  • Increasing demand of energy, the depletion of fossil fuel reserves, energy security and the climate change have forced us to look upon alternate energy resources. For today's electric vehicles that run on lithium-ion batteries, one of the biggest downsides is the limited range between recharging. Over the past several years, researchers have been working on lithium-air battery. These batteries could significantly increase the range of electric vehicles due to their high energy density, which could theoretically be equal to the energy density of gasoline. Li-air batteries are potentially viable ultra-high energy density chemical power sources, which could potentially offer specific energies up to 3000 $Whkg^{-1}$ being rechargeable. This paper provides a review on Lithium air battery as alternate energy resource for the future.