• 제목/요약/키워드: Li-Ion battery system

검색결과 144건 처리시간 0.02초

CFD 해석을 적용한 18650 리튬-이온 배터리 팩의 열 해석 신뢰도 기초 분석 (Basic Investigation into the Validity of Thermal Analysis of 18650 Li-ion Battery Pack Using CFD Simulation)

  • 심창휘;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권5호
    • /
    • pp.489-497
    • /
    • 2020
  • The Li-ion battery is considered to be one of the potential power sources for electric vehicles. In fact, the efficiency, reliability, and cycle life of Li-ion batteries are highly influenced by their thermal conditions. Therefore, a novel thermal management system is highly required to simultaneously achieve high performance and long life of the battery pack. Basically, thermal modeling is a key issue for the novel thermal management of Li-ion battery systems. In this paper, as a basic study for battery thermal modeling, temperature distributions inside the simple Li-ion battery pack (comprises of nine 18650 Li-ion batteries) under a 1C discharging condition were investigated using measurement and computational fluid dynamics (CFD) simulation approaches. The heat flux boundary conditions of battery cells for the CFD thermal analysis of battery pack were provided by the measurement of single battery cell temperature. The temperature distribution inside the battery pack were compared at six monitoring locations. Results show that the accurate estimation of heat flux at the surface of single cylindrical battery is paramount to the prediction of temperature distributions inside the Li-ion battery under various discharging conditions (C-rates). It is considered that the research approach for the estimation of temperature distribution used in this study can be used as a basic tool to understand the thermal behavior of Li-ion battery pack for the construction of effective battery thermal management systems.

PCM 종류에 따른 18650 리튬-이온 셀 모듈의 냉각 특성 연구 (Study of Cooling Characteristics of 18650 Li-ion Cell Module with Different Types of Phase Change Materials (PCMs))

  • 유시원;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.622-629
    • /
    • 2020
  • The performance and cost of electric vehicles (EVs) are much influenced by the performance and service life of the Li-ion battery system. In particular, the cell performance and reliability of Li-ion battery packs are highly dependent on their operating temperature. Therefore, a novel battery thermal management is crucial for Li-ion batteries owing to heat dissipation effects on their performance. Among various types of battery thermal management systems (BTMS'), the phase change material (PCM) based BTMS is considered to be a promising cooling system in terms of guaranteeing the performance and reliability of Li-ion batteries. This work is mainly concerned with the basic research on PCM based BTMS. In this paper, a basic experimental study on PCM based battery cooling system was performed. The main purpose of the present study is to present a comparison of two PCM-based cooling systems (n-Eicosane and n-Docosane) of the unit 18650 battery module. To this end, the simplified PCM-based Li-ion battery module with two 18650 batteries was designed and fabricated. The thermal behavior (such as temperature rise of the battery pack) with various discharge rates (c-rate) was mainly investigated and compared for two types of battery systems employing PCM-based cooling. It is considered that the results obtained from this study provide good fundamental data on screening the appropriate PCMs for future research on PCM based BTMS for EV applications.

비접촉식 충전기의 전력 전달부 설계 (Power stage for Contact-less Induction Charging)

  • 이민철;최배근;홍영욱;조규형
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2939-2942
    • /
    • 2003
  • A new contactless Li-ion battery charging system was proposed. The conventional methods for charging Li-ion battery have some weak points. For example, there can be a contact failure, a poor waterproof, and a difficulty to standardize the battery charging systems. The new proposed system can overcome these weak points. The new charging system is composed of power transfer part and data transfer part. This paper focuses on the power transfer part for contactless battery charging. The power stage is mainly composed of PPRC(Push-pull Parallel Resonant Converter) and flyback converter. The new method of chaging Li-ion battery was proposed and PPRC + flyback-boost topology was analyzed. The proposed toplogy was tested under the constant voltage control and the constant current control which are adequate for charging Li-ion battery.

  • PDF

고출력/저온 방전을 위한 리튬전지와 슈퍼캐패시터 하이브리드 셀의 방전 거동 특성 연구 (Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge)

  • 장우진;홍승철;홍정표;황태선;오준석;고성연;이가은;안균영;김현수;서종환;남재도
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.49-57
    • /
    • 2013
  • In this study, we fabricated a parallelly connected Li-ion battery/supercapacitor hybrid cell to combine the advantageous characteristics of Li-ion battery and supercapacitor, high energy density and high power density, respectively, and investigated its discharging characteristics over a wide temperature range from -40 to $25^{\circ}C$. At the initial state of discharging of the hybrid cell, the power was mostly provided by the supercapacitor and then the portion of the Li-ion battery was gradually increased. By installing a switching system into the hybrid cell, which controls the discharging sequence of Li-ion battery and supercapacitor, the maximum power was improved by 40% compared with non switching system. In addition at low temperatures, the power and discharging time of the hybrid cell were significantly enhanced compared to a battery-alone system. The hybrid cell is expected to be applied in electric vehicles and small domestic appliances that require high power at initial discharging state.

A Novel Model of a Li-ion Battery Based on the Manufacturer's Datasheet

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • 제18권5호
    • /
    • pp.237-245
    • /
    • 2017
  • A novel battery model based on the manufacturer datasheet is proposed. According to this model, not only the steady state but also the dynamic charging performance of the Li-ion battery can be analyzed and evaluated. The major advantage of our model is that all the parameters can be directly obtained from the datasheet and no additional experiments are required. Moreover, the transition between charge and discharge stages was analyzed based on our model, and a novel Simulink module was built to predict the energy consumption of a battery-powered system. Experiments were carried out to verify the model accuracy. Although the new model was developed for the Li-ion battery, it is expected to be applicable to other batteries.

시나리오별 충방전에 따른 리튬이온(Li-ion) 배터리 특성 (Characteristics of Lithium-ion(Li-ion) Batteries according to Charging and Discharging by Scenario)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제23권4호
    • /
    • pp.171-176
    • /
    • 2023
  • 21세기 현대사회에 있어서 이차전지 배터리(Battery)를 이용한 휴대용 전자제품은 계속해서 경량, 소형화되어가는 추세 속에서 있다. 그리고 이러한 추세와 더불어 우리는 몸에 착용할 수 있는 전자 장비를 이용하여 하루 일상생활에서 정보를 수집, 공유하는 4차 산업혁명 시대에 활동하고 있다. 따라서 소형 가전제품 및 디지털 기기를 사용하면서 재충전할 수 있는 이차전지 배터리의 역할은 점점 더 중요하게 증가하고 있다. 이러한 증가와 더불어 이차전지 배터리 성능시험은 특성, 수명, 고장진단, 재활용 등의 다양한 시험방법을 요구하고 있으며 있다. 또한 배터리의 안전과 적절한 기능을 보장하기 위한 배터리 테스트 시스템 구축과 이에 따른 지침 및 올바른 기본지식이 고려되고 있다. 따라서 본 논문에서는 배터리의 성능과 직접으로 연결된 시나리오별 충방전에 따른 이차전지 리튬이온(Li-ion) 배터리의 특성에 대해 살펴보고자 한다.

18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구 (Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation)

  • 장호선;박민규;전지환;박성수;김태우;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.

Single Cell Li-ion 전지 충전 IC (Single Cell Li-ion Battery Charger)

  • 이락현;김준식;박시홍
    • 한국전기전자재료학회논문지
    • /
    • 제22권7호
    • /
    • pp.576-579
    • /
    • 2009
  • This paper suggests a autonomous linear Li-ion battery charger which can safely distribute power between an external power source(AC adapter, auto adapter, or USB source), battery, and the system load. Depending on an external power source's capability, the charger selects proper charging-mode automatically. The charger IC designed and fabricated on Dongbu HITEC's $0.35{\mu}m$ BCD process with layers of one poly and three metals.

Single Cell Li-ion 전지 충전 IC (A Single Cell Li-ion Battery Charger)

  • 이락현;김준식;박시홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.27-28
    • /
    • 2009
  • This paper suggests a autonomous linear Li-ion battery charger which can safely distribute power between an external power source(AC adapter, auto adapter, or USB source), battery, and the system load. Depending on an external power source's capability, the charger selects proper charging-mode automatically. The charger IC designed and fabricated on Dongbu HITEC's $0.35{\mu}m$ BCD process with layers of one poly and three metals.

  • PDF

18650 리튬-이온 단일 배터리 모듈의 냉각 성능 비교에 관한 실험적 연구(공기 냉각과 PCM 기반 냉각) (Experimental Study of Cooling Performance Comparison of a 18650 Li-ion Unit Battery Module (Air Cooling vs. PCM-based Cooling))

  • 백승수;유시원;김한상
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.212-218
    • /
    • 2018
  • Li-ion battery system is regarded as one of the most potent power sources for electrified power-trains. For the Li-ion battery system to be widely adopted in automotive applications, the performance, safety, and cycle life issues need to be properly addressed. These issues are closely related to the thermal management of battery system. Especially, the effective cooling module design is the core part for the novel battery thermal management system development. In this paper, an experimental approach was carried out as a basic part of comprehensive battery thermal management research. The main goal of this paper is to present a comparison of two cooling systems (air cooling and phase change material (PCM) based cooling) of the unit 18650 battery module. The temperature rise with different battery discharge rate (c-rate) was mainly investigated and analyzed for two types of battery cooling systems. It is expected that this study can properly contribute to providing basic insights into the design of robust battery thermal management system for vehicular applications.