• Title/Summary/Keyword: Li battery

Search Result 1,091, Processing Time 0.021 seconds

A Study on the Fire Risk of ESS through Fire Status and Field Investigation (화재현황 및 현장조사를 통한 ESS의 화재 위험성 연구)

  • Park, Kwang-Muk;Kim, Jae-Hyun;Park, Jin-Yeong;Bang, Sun-Bae
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.91-99
    • /
    • 2018
  • Recently, the spread of ESS in Korea has increased and a fire accident has also occurred. By July 2018, there were a total of 7 cases. All 7 cases were ESS systems consisting of lithium-ion batteries and were burned down. Both the automatic fire extinguisher and the fire department were not able to digest. In this paper, the characteristics of ESS fire are analyzed based on recent ESS fire situation and field investigation, and the cause of fire is divided into environmental, electrical and thermal factors. As a result, it was found that the ESS fire was correlated with the installation environment of the system. In the domestic and overseas lithium ion battery test standard and ESS facility standard survey, the trends and differences of domestic and overseas facilities standards were identified. Based on the fire status and field investigationy, and domestic and overseas facility standard survey, measures were suggested to prevent and prevent the spread of fire in ESS fire.

Electrochemical Properties of Ball-milled Tin-Graphite Composite Anode Materials for Lithium-Ion Battery (볼 밀링으로 제조된 리튬이온전지용 주석-흑연 복합체 음극재의 전기화학적 특성)

  • Lee, Tae-Hui;Hong, Hyeon-A;Cho, Kwon-Koo;Kim, Yoo-Young
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.462-469
    • /
    • 2021
  • Tin/graphite composites are prepared as anode materials for Li-ion batteries using a dry ball-milling process. The main experimental variables in this work are the ball milling time (0-8 h) and composition ratio (tin:graphite=5:95, 15:85, and 30:70 w/w) of graphite and tin powder. For comparison, a tin/graphite composite is prepared using wet ball milling. The morphology and structure of the different tin/graphite composites are investigated using X-ray diffraction, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and scanning and transmission electron microscopy. The electrochemical properties of the samples are also examined. The optimal dry ball milling time for the uniform mixing of graphite and tin is 6 h in a graphite-30wt.%Sn sample. The electrode prepared from the composite that is dry-ball-milled for 6 h exhibits the best cycle performance (discharge capacity after 50th cycle: 308 mAh/g and capacity retention: 46%). The discharge capacity after the 50th cycle is approximately 112 mAh/g, higher than that when the electrode is composed of only graphite (196 mAh/g after 50th cycle). This result indicates that it is possible to manufacture a tin/graphite composite anode material that can effectively buffer the volume change that occurs during cycling, even using a simple dry ball-milling process.

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.4
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

A Study on Co-precipitation of Positive Electrode Active Material for Recycled Lithium-ion Batteries Using Black Powder Leaching Solution (블랙 파우더 침출용액을 이용한 재활용 리튬이온전지의 양극 활물질 공침법에 대한 연구)

  • JAEGEUN LEE;JAEKYUNG LEE;SUNGGI KWON;GYECHOON PARK
    • Journal of Hydrogen and New Energy
    • /
    • v.35 no.3
    • /
    • pp.336-344
    • /
    • 2024
  • In this study, a Ni0.9Co0.05Mn0.05(OH)2 precursor used as an anode active material using a black powder leaching solution of a recycled lithium ion battery was prepared through coprecipitation synthesis with co-precipitation time, NH4OH concentration, pH, and stirring time as variables. The characteristics of the prepared powder were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size analysis (PSA), and inductively coupled plasma optical emission spectroscopy (ICP-OES). It was confirmed that the single crystal thickness of the LiNi1-x-yCoxMnyO2 (NCM) precursor changes depending on the NH4OH concentration and reaction pH value, and thicker single crystals are formed at 2 M NH4OH compared to 1 M and at pH 10.8-11.8 compared to pH 11.8-12.0. NCM precursor particles increased with coprecipitation time, and it was confirmed that the 72 hours NCM precursor had the largest particle size. Through ICP-OES analysis, it was confirmed that the NCM precursor was synthesized with the target composition of Ni2+:Co2+:Mn2+=90:5:5.

Electrochemical Properties of Pyrolytic Carbon and Boron-doped Carbon for Anode Materials In Li-ion Secondary Batteries (리튬 이온 이차전지 부극용 열분해 탄소 및 붕소첨가 탄소의 전기화학적 특성)

  • Kwon, Ik-Hyun;Song, Myoung-Youp;Bang, Eui-Yong;Han, Young-Soo;Kim, Ki-Tae;Lee, Jai-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.1
    • /
    • pp.30-38
    • /
    • 2002
  • Disordered carbon and boron-substituted disordered carbons $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ were synthesized by Pyrolysis of LPG(liquid Propane gas)and $BCl_3$. Their electrochemical properties as anode materials for Li-ion secondary batteries were then investigated. When PVDF is added to the sample in a weight ratio 5 : 95, the disordered carbon with x=0.00 had the first discharge capacity 374 mAh/g. Its cycling performance was relatively good from the second cycle and it had the discharge capacity 258 mAh/g at the 10th cycle. When PVDF is added to the sample in a weight ratio 5 : 95, the sample with x=0.05 among the samples $C_{l-x}B_x(x=0.05,\;0.10,\;0.20)$ exhibited the largest first discharge capacity 860 mAh/g and discharge capacity 181 mAh/g at the 10th cycle. All the samples had similar cycling performances from the second cycle. The sample $C_{0.90}B_{0.10}$ showed the best electrochemical properties as a anode materials fur Li-ion secondary battery from the view points of the first discharge capacity(853 mAh/g when $10w1.\%$ PVDF is used), cycling performance, discharge capacity(400mAh/g at the 10th cycle when $10wt.\%$ PVDF is used). All the samples showed generally larger charge and discharge capacities when $10wt.\%$ PVDF ratter than $5wt.\%$ PVDF is used. The plateau region in the range of voltage lower than 1.25V becomes larger probably since the structure becomes less disordered by the addition of boron. When boron is added, the charge and discharge capacities decreased suddenly at the second cycle. This may be become only a part of Li are reversibly deintercalated and intercalated and a part of Li which are strongly combined with B are not deintercalated. The increases in charge and discharge capacities are considered to be resulted from the increase in the potential of Li in the boron-added carbons, caused by the strengthening of the chemical bond between the intercalated Li and the boron-carbon host since the boron acts as electron acceptor.

Effects of Calcinations Temperature on the Electrochemical Properties of Li[Ni0.6Co0.2Mn0.2]O2 Lithium-ion Cathode Materials (리튬 이차전지용 양극활물질 Li[Ni0.6Co0.2Mn0.2]O2의 소성 온도가 전기화학적 특성에 미치는 영향)

  • Yoo, Gi-Won;Jeon, Hyo-Jin;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.59-64
    • /
    • 2013
  • Using $Na_2CO_3$ and $MeSO_4$ (Me = Ni, Co and Mn) as starting materials, the precursor of $[Ni_{0.6}Co_{0.2}Mn_{0.2}]CO_3$ has been synthesized by carbonate co-precipitation. The precursor was mixed with $Li_2CO_3$, and calcined at 750, 850, and$950^{\circ}C$ in air. Effect of calcinations temperature on characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ cathode materials was investigated. The structure and characteristics of $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ were determined by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and electrochemical measurements. The X-ray diffraction (XRD) results show that the intensity ratio of $I_{(003)}/I_{(104)}$ increased and the R-factor ratio decreased with the increase of calcinations temperature. And Scanning electron microscopy (SEM) result show that the primary particle size increased. Especially, the $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ calcined at $950^{\circ}C$ for 24 H shows excellent electrochemical performances with reversible specific capacity of $165.3mAhg^{-1}$ [cut-off voltage 2.5~4.3 V, 0.1 C($17mAhg^{-1}$)] and good capacity retention of 95.4% after 50th charge/discharge cycles[cut-off voltage 2.5~4.3 V, 1 C($170mAhg^{-1}$)].

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Synthesis and Electrochemical Properties of Carbon Coated Li4Ti5O12 using PVC (PVC를 원료로 탄소코팅한 Li4Ti5O12의 합성 및 전기화학적 특성)

  • Hyun, Si-Cheol;Na, Byung-Ki
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.77-84
    • /
    • 2018
  • In this study, $Li_4Ti_5O_{12}$ anode materials for lithium ion battery were synthesized by dry ball-mill method. Polyvinyl chloride (PVC) as a carbon source was added to improve electrochemical properties. When the PVC was added after $Li_4Ti_5O_{12}$ formation, the spinel structure was well synthesized and it was confirmed by X-ray diffraction (XRD) experiments. When the carbon material was added before the synthesis and the heat treatment was performed, it was confirmed that a material having a different crystal structure was synthesized even when a small amount of carbon material was added. In the case of $Li_4Ti_5O_{12}$ without the carbon material, the electrical conductivity value was about $10{\mu}S\;m^{-1}$, which was very small and similar to that of the nonconductor. As the carbon was added, the electrical conductivity was greatly improved and increased up to 10,000 times. Electrochemical impedance spectroscopy (EIS) analysis showed that the size of semicircle corresponding to the resistance decreased with the carbon addition. This indicates that the resistance inside the electrode is reduced. According to the Cyclic voltammetry (CV) analysis, the potential difference between the oxidation peak and the reduction peak was reduced with carbon addition. This means that the rate of lithium ion insertion and deinsertion was increased. $Li_4Ti_5O_{12}$ with 9.5 wt% PVC added sample showed the best properties in rate capabilities of $180mA\;h\;g^{-1}$ at 0.2 C-rate, $165mA\;h\;g^{-1}$ at 0.5 C-rate, and $95.8mA\;h\;g^{-1}$ at 5 C-rate.

Study on the Thickness Effect of the Separator for Lithium Secondary Batteries (리튬이차전지용 분리막의 두께에 따른 특성 연구)

  • Kim, Sang Woo;Seok, Ji-Hoo;Kim, Byung-Hyun Daniel;Cho, Hee-Min;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.7-12
    • /
    • 2014
  • There is increasing demand on the reducing the weight and the volume of the major components in lithium secondary battery to improve energy density. Separator not only provides pathway for lithium ion movement but also prevents direct contact between anode and cathode. Herein we fabricated polyethylene separator by varying biaxial stretching ratio to obtain membrane thickness of 16, 12, and $9{\mu}m$. Mechanical and thermal properties of the separator with different thickness were investigated. Also rate capability and charge-discharge cycle property up to 500 cycles were studied using coin type full-cell with $LiCoO_2$ and graphite as a cathode and an anode, respectively. All the cells using separator with different thickness demonstrated excellent capacity retention after 500cycles (around 80%). Considering the rate capability, cell using separator with thickness of $9{\mu}m$ showed best performance. Interestingly, separator thickness of $9{\mu}m$ was more resistant to heat contraction compared to that of $16{\mu}m$ separator.

Electrochemical Performance of Hollow Silicon/Carbon Anode Materials for Lithium Ion Battery (리튬이차전지용 Hollow Silicon/Carbon 음극소재의 전기화학적 성능)

  • Jung, Min Ji;Lee, Jong Dae
    • Applied Chemistry for Engineering
    • /
    • v.27 no.4
    • /
    • pp.444-448
    • /
    • 2016
  • Hollow silicon/carbon (H-Si/C) composites as anode materials for lithium ion batteries were investigated to overcome the large volume expansion. H-Si/C composites were prepared as follows; hollow $SiO_2\;(H-SiO_2)$ was prepared by adding $NaBH_4$ to $SiO_2$ synthesized using $st{\ddot{o}}ber$ method followed by magnesiothermic reduction and carbonization of phenolic resin. The H-Si/C composites were analyzed by XRD, SEM, BET and EDX. To improve the capacity and cycle performance, the electrochemical characteristics of H-Si/C composites synthesized with various $NaBH_4$ contents were investigated by charge/discharge, cycle, cyclic voltammetry and impedance tests. The coin cell using H-Si/C composite ($SiO_2:NaBH_4=1:1$ in weight) in the electrolyte of $LiPF_6$ dissolved in organic solvents (EC : DMC : EMC = 1 : 1 : 1 vol%) has better capacity (1459 mAh/g) than those of other composition coin cells. It is found that the coin cell ($SiO_2:NaBH_4=1:1$ in weight) has an excellent capacity retention from 2nd cycle to 40th cycle.