• Title/Summary/Keyword: Levenberg-Marquardt Method

Search Result 89, Processing Time 0.02 seconds

Real-Time Image Mosaic Using DirectX (DirectX를 이용한 실시간 영상 모자익)

  • Chong, Min-Yeong;Choi, Seung-Hyun;Bae, Ki-Tae;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.803-810
    • /
    • 2003
  • In this paper, we describe a fast image mosaic method for constructing a large-scale image with video image captured from cameras that are arranged in radial shape. In the first step, we adopt the phase correlation algorithm to estimate the horizontal and vertical displacement between two adjacent images. Secondly, we calculate the accurate transform matrix among those cameras with Levenberg-Marquardt method. In the last step, those images are stitched into one large scale image in real-time by applying the transform matrix to the texture mapping function of DirectX. The feature of the method is that we do not need to use special hardware devices or write machine-level programs for Implementing a real-time mosaic system since we use conventional graphic APIs (Application Programming Interfaces), DirectX for image synthesis process.

Sensor Fusion and Neural Network Analysis for Drill-Wear Monitoring (센서퓨젼 기반의 인공신경망을 이용한 드릴 마모 모니터링)

  • Prasopchaichana, Kritsada;Kwon, Oh-Yang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.1
    • /
    • pp.77-85
    • /
    • 2008
  • The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage. In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis. Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network analysis.

Iterative Teconstruction of a Cylinder Buried in the Lossy Half Space (손실 반공간에 묻힌 원통형 산란체의 검출 및 영상제구성에 의한 식별)

  • 김정석;나정웅
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.6
    • /
    • pp.939-945
    • /
    • 2000
  • A cylindrical object buried in the lossy half space is reconstructed from the measured scattered fields above the lossy half space. The position, the size and the medium parameters i.e. relative dielectric constants and conductivity of the buried object as well as the medium parameters of the background lossy half space are obtained from the scattered fields by using the iterative inversion method and the optimization hybrid algorithm combining the genetic algorithm and the Levenberg-Marquardt algorithm. Illposedness of the inversion due to the measurement errors in the scattered fields are regularized by filtering out the evanescent modes in the spatial frequency spectrum domain.

  • PDF

Water Quality Forecasting at Gongju station in Geum River using Neural Network Model (신경망 모형을 적용한 금강 공주지점의 수질예측)

  • An, Sang-Jin;Yeon, In-Seong;Han, Yang-Su;Lee, Jae-Gyeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.6
    • /
    • pp.701-711
    • /
    • 2001
  • Forecasting of water quality variation is not an easy process due to the complicated nature of various water quality factors and their interrelationships. The objective of this study is to test the applicability of neural network models to the forecasting of the water quality at Gongju station in Geum River. This is done by forecasting monthly water qualities such as DO, BOD, and TN, and comparing with those obtained by ARIMA model. The neural network models of this study use BP(Back Propagation) algorithm for training. In order to improve the performance of the training, the models are tested in three different styles ; MANN model which uses the Moment-Adaptive learning rate method, LMNN model which uses the Levenberg-Marquardt method, and MNN model which separates the hidden layers for judgement factors from the hidden layers for water quality data. the results show that the forecasted water qualities are reasonably close to the observed data. And the MNN model shows the best results among the three models tested

  • PDF

A New Dynamic Prediction Algorithm for Highway Traffic Rate (고속도로 통행량 예측을 위한 새로운 동적 알고리즘)

  • Lee, Gwangyeon;Park, Kisoeb
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.3
    • /
    • pp.41-48
    • /
    • 2020
  • In this paper, a dynamic prediction algorithm using the cumulative distribution function for traffic volume is presented as a new method for predicting highway traffic rate more accurately, where an approximation function of the cumulative distribution function is obtained through numerical methods such as natural cubic spline interpolation and Levenberg-Marquardt method. This algorithm is a new structure of random number generation algorithm using the cumulative distribution function used in financial mathematics to be suitable for predicting traffic flow. It can be confirmed that if the highway traffic rate is simulated with this algorithm, the result is very similar to the actual traffic volume. Therefore, this algorithm is a new one that can be used in a variety of areas that require traffic forecasting as well as highways.

System Identification on Dredged Soil Problems using Least Square Method (최소자승법을 이용한 준설토 문제의 System Identification)

  • Yu, Nam-Jae;Park, Byung-Soo;Kim, Young-Gil;Lee, Myung-Woog
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.127-133
    • /
    • 1999
  • This paper is a research about system identification which optimizes uncertain geothechnical properties from the data measured during geotechnical design and construction. Various numerical optimization algorithms of Simplex method, Powell method, Rosenbrock method and Levenberg-Marquardt method were applied to the excavation problem to determine which method showed the best results with respect to robustness of success in finding an optimal solution to within a certain accuracy and number of function evaluations. From the results of numerical analysis, all of four algorithms are converged to exact solution after satisfying the allowed criteria, and Levenberg-Marquardt's algorithms was identified to be the most efficient method in number of function evaluations. System identification was applied to geotechnical engineering problems, possibly being occurred in field, to verify its applicability : estimation of settlement due to self-weight consolidation in dredged and filled soil. For self-weight consolidational settlement of a dredged soil, a program of evaluating the constitutive relationship of effective stress-void ratio-permeability was developed by using the technique of system identification. Thus, consolidational characteristics of a dredged soil, having a very high initial void ratio, can be evaluated.

  • PDF

Lateral Control of Vision-Based Autonomous Vehicle using Neural Network (신형회로망을 이용한 비젼기반 자율주행차량의 횡방향제어)

  • 김영주;이경백;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.687-690
    • /
    • 2000
  • Lately, many studies have been progressed for the protection human's lives and property as holding in check accidents happened by human's carelessness or mistakes. One part of these is the development of an autonomouse vehicle. General control method of vision-based autonomous vehicle system is to determine the navigation direction by analyzing lane images from a camera, and to navigate using proper control algorithm. In this paper, characteristic points are abstracted from lane images using lane recognition algorithm with sobel operator. And then the vehicle is controlled using two proposed auto-steering algorithms. Two steering control algorithms are introduced in this paper. First method is to use the geometric relation of a camera. After transforming from an image coordinate to a vehicle coordinate, a steering angle is calculated using Ackermann angle. Second one is using a neural network algorithm. It doesn't need to use the geometric relation of a camera and is easy to apply a steering algorithm. In addition, It is a nearest algorithm for the driving style of human driver. Proposed controller is a multilayer neural network using Levenberg-Marquardt backpropagation learning algorithm which was estimated much better than other methods, i.e. Conjugate Gradient or Gradient Decent ones.

  • PDF

The RTD Measurement on a Submerged Bio-Reactor using a Radioisotope Tracer and the RTD Analysis

  • Seungkwon Shin;Kim, Jongbum;Sunghee Jung;Joonha Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.2
    • /
    • pp.210-214
    • /
    • 2003
  • This paper presents a residence time distribution (RTD) measurement method using a radioisotope tracer and the estimation method of RTD model parameters to analyze a submerged bio-reactor. The mathematical RTD models have been investigated to represent the flow behavior and the existence of stagnant regions in the reactor. Knowing the parameters of the RTD model is important for understanding the mixing characteristics of a reactor The radioisotope tracer experiment was carried out by injecting a radioisotope tracer as a pulse into the inlet of the reactor and recording the change of its concentration at the outlet of the reactor to obtain the experimental RTD response. The parameter estimation was performed by the Levenberg-Marquardt optimization algorithm. The proposed scheme allowed the parameter estimation of RTD model suggested by Adler-Hovorka with very low deviations. The estimation procedure is shown to lead to accurate estimation of the RTD parameters and to a good agreement between experimental and simulated response.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

Development of Selective Harmonic Elimination PWM technique for voltage quality improvement of a single phase Cascaded H-Bridge inverter (단상 Cascaded H-Bridge 인버터의 출력 전압 품질 향상을 위한 선택적 고조파 제거 변조 기법 개발)

  • Bokwon Lee;Jae Suk Lee
    • Journal of IKEEE
    • /
    • v.28 no.3
    • /
    • pp.432-439
    • /
    • 2024
  • This paper introduces an enhanced Selective Harmonic Elimination (SHE) technique of a single-phase Cascaded H-Bridge (CHB) Multilevel Inverter (MLI) for improving the reliability and power quality of a second life battery energy storage system (ESS). The technique involves solving non-linear transcendental equations derived from Fourier series offline to determine the optimal switching angles for the proposed SHE-PWM implementation. These angles are then applied in real-time via a Look-Up Table (LUT). The Levenberg-Marquardt algorithm, an iterative method, is employed in MATLAB to solve the equations and obtain the switching angles. The effectiveness of the proposed method is validated using PLECS simulation software and is compared with other conventional PWM techniques for MLIs.