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1' Abstract I

The objective of the study is to construct a sensor fusion system for tool-condition monitoring (TCM) that will lead
to a more efficient and economical drill usage. Drill-wear monitoring has an important attribute in the automatic
machining processes as it can help preventing the damage of tools and workpieces, and optimizing the drill usage.
In this study, we present the architectures of a multi-layer feed-forward neural network with Levenberg-Marquardt
training algorithm based on sensor fusion for the monitoring of drill-wear condition. The input features to the neural
networks were extracted from AE, vibration and current signals using the wavelet packet transform (WPT) analysis.
Training and testing were performed at a moderate range of cutting conditions in the dry drilling of steel plates. The

results show good performance in drill- wear monitoring by the proposed method of sensor fusion and neural network
analysis.
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1. Introduction in the automated machining. Furthermore, under a certain
cutting condition, wear development during drilling can
Tool-condition monitoring (TCM) is an indispensable reach the unacceptable levels, resulting in the damage of
component for the prevention of the damage in machine workpieces as well as machine tools and possibly in the
tools and workpieces and the optimization of tool usage production loss. Flank wear is widely used as the indica-
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tion of the severity of drill-wear condition. Its progre-
ssive process is caused by the intimate frictional contact
and the temperature elevated at the interface between the
drill and the workpiece. Flank wear can be measured by
using the average and the maximum wear land size, Vg
and Vemas, as shown in Fig. 1.

Various methods for tool wear monitoring have been
reported in the literature. Most of them are categorized
by two main techniques’ ™. The first is the direct measure-
ment of tool wear using optical methods, which can only
be applied when cutting tools are not in process of cutting.
The second is the indirect methods which measure the
relationship between the tool condition and the signals
acquired depending on the sensors used. Among the va-
rious sensors used, each sensoring technique has its own
advantages and drawbacks with the result that no single
technique has proved to be completely reliable over the
complex nature of the cutting processes. Therefore, a sen-
sor fusion system which uses more than one sensor is
attractive since the loss of sensitivity in one sensor domain
can be offset by information from other sensors.

Three sensing techniques of acoustic emission, vibration
and current sensoring were used as the input features in
the proposed neural network based on sensor fusion for
drill wear monitoring.

Acoustic emission (AE) appeared to be one of the most
effective indirect monitoring methods. The major advantage
of AE monitoring is that the frequency range of AE
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Fig. 1 A schematic of a typical twist drill with flank
wear
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signals can be much higher than the machine vibrations
and environmental noise. In addition, it does not affect
the cutting condition. But one of the most important fea-
tures for AE signal is the additional signal processing
which extract signal features from the signals detected
under given cutting conditions®™®. A more comprehensive
monitoring strategy would involve multi-sensor and data
fusion technique which will be a more effective approach
for AE- based tool condition monitoring(m).

Vibration analysis is also employed for drilling. It was
found that an increase in drill wear will lead to an in-
crease in the frequency content of the vibrations, parti-
cularly in the thrust direction. For tools near failure, the
amplitudes of vibrations tend to increase”. Vibration signals
have tremendous promise for tool wear monitoring and
diagnosis using simple structured neural networks®.

Current sensor is considered one of the most effective
means of monitoring tool wear and adaptive control of
machining processes. The advantage of using current sen-
sors, which are fitted to the external power supply lines,
is that these sensors do not hinder the machining process
and are cost effective®”. Both the spindle motor and feed
motor current increase as tool wear increase. It is found
that the tool wear has more significant effects on the feed
motor current than the spindle motor current”. Current
Sensor signals individually or in combination with other
sensors signals can be used as input to a tool condition
monitoring system using artificial neural networks.

In this study, we have investigated the feasibility to use
signals from multi-sensor sources to train and test the
neural networks based on sensor fusion for predicting the
drill flank wear. Seven neural network architectures were
designed with the different groups of input sensor fea-
tures. AE and vibration signals were extracted as input
features of root-mean-square (RMS) voltages of the de-
composed signal by wavelet packet transform (WPT). Both
the spindle motor and feed motor current signals were ext-
racted as RMS voltages without WPT signal decomposition.

2. Experimental procedures

Experiments were carried out on a machining center
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(HiMac-V100, Hyundai). Drills used were AISI M2 twist
drills with 6 mm diameter and point angle of 118°. Work-
pieces were AISI 1055 steel plates of 120x120%25 mm.
The hardness of plates was measured to 215 Hg. Two AE
sensors (B1025, Digital Wave) were mounted on the
clamping fixture at the opposite side each other as shown
in Fig. 2. AE activities during drilling tests were moni-
tored and recorded by using an AE data acquisition board
(Mistras2001, Physical Acoustics), with pre-amplification
of 40 dB, band-pass filtering at 0.1-1.2 MHz and thre-
shold of 50 dB. A vibration measuring accelerometer
(Rectuson model SA12ZSC-T1, with sensitivity of 100
mV/(m/sz) and a measurement range of +40 m/sz) was
mounted on the spindle-bearing housing of CNC machining
center machine. The analog signals were fed into charge
amplifier (MMF model M68D3) with band-pass filter 3 Hz-
50 kHz and then to a digital oscilloscope with sampling
rate 20,000 samples/s. The spindle motor and feed motor
current signals of the machining center were measured
with Hall current sensors (HINODE model H-A050A, with
sensitivity of 50A/4V) and the signals were sent to a
digital oscilloscope with sampling rate 1,000 samples/s.

During each test, flank wear was measured by an optical
microscope aided by a digital camera and an image pro-
cessing software. Drilling tests were first performed at
nine sets of cutting conditions with three cutting speeds
(22, 26, 30 m/min) and three feed rates (0.13, 0.15, 0.17

mm/rev) without coolant, which were used for off-line
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Fig. 2 Schematic diagram of the experiment set-up
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training and testing. Three sets of cutting conditions were
added later to check the validity of the neural networks
with the features extracted from untrained data set. The
cutting process was continued until the max. allowable
flank wear of Vg = 0.3 mm or the complete failure of
a drill.

3. Signal analysis and feature extraction

In through-hole drilling operation, three steps are dis-
tinguishable, which are stage 1 corresponding to transient
drilling or entry stage, stage II called steady drilling stage
and the last stage III named exit stage as shown in Fig.
3. For transient drilling stage, the vibration and current
signal amplitudes increase with drilling depth until the
drill tip completely penetrates the workpiece when the
signals become stable. During Stage III, current signal
decreases, but vibration signal amplitude increases due to
unstable cutting process (incomplete cutting lips). Therefore,
the vibration and current signals obtained from beginning
of steady drilling stage about 2 seconds were extracted
as input features to the neural networks.

AE signal activity also is fluctuated in stage I and III
because of high chip-breakage rate and unstable cutting
process. Based on the analysis of AE sources, AE signals
detected from metal cutting consist of the continuous and
the transient signals, which have distinctly different
characteristics”. Continuous signals are associated with
shearing in the primary zone and wear on the tool face
and the flank, while transient or burst signals are with
either tool fracture or chip breakage. In this study, the

rStage I
Staie I

Stage IIIJ

Fig. 3 Three stages of through-hole drilling operation
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AE input features to the neural networks were extracted
from the continuous AE signals at the beginning of steady
drilling stage.

Fig. 4 shows sample AE and vibration signals, their
corresponding fast. Fouier transform (FFT). The FFT
analysis shows that the frequency distribution of signals
change magnitude and shift location of spectral peaks as
the tool wears. This mean the RMS of signal amplitude
is not enough sensitive to the change of tool wear. For
a more comprehensive monitoring strategy, the signal
should be determined RMS voltages of decomposed com-
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Fig. 4 The AE and vibration signals and their FFT plots
for two stages of progressive flank wear, operating
at a cutting speed 26 m/min and feed rate 0.13
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ponents in different time windows and frequency bands
by WPT. But in case of current signals, the synchronous
spindle and feed motor currents are alternating with a
frequency is proportional to the spindle speed and feed
rate, respectively as shown in Fig. 5. So, the signal
decomposition is unnecessary because signal did not

contain various frequencies.

3.1 Frequency band—RMS analysis based on

wavelet packet transform

In wavelet analysis, the signal is decomposed to approxi-
mations and details. The approximations are the high-
scale, low-frequency components of the signal and the
details are the low-scale, high-frequency components.
The decomposition process can be iterated, with succe-
ssive approximations being decomposed in turn, so that
one signal is broken down into many lower resolution
components. This is called the wavelet decomposition
tree"'” as shown in Fig. 6.

In wavelet packet analysis, the details as well as the
approximations can be split. Therefore, the wavelet packet
method is a generalization of wavelet decomposition that
offers a richer range of possibilities for signal analysis.

(10)

The complete binary tree” is produced as shown in the
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Fig. 5 (a) the miationship between current signal fre-
quency and spindle speed, (b) the relationship
between current signal frequency and feed rate
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Fig. 6 The 3-level wavelet decomposition tree
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following Fig. 7. The idea of this decomposition is to
start from a scale-oriented decomposition, and then to
analyze the obtained signals on frequency subbands. In
this study, the name of wavelet packet are named by
numbers of level and order enclosed in parentheses, for
example, the wavelet packet AAA;, DAA;, ..., and DDD;4
are named wavelet packet (3,0), (3,1), ..., and (3,7) res-
pectively.

MATLAB was used for the wavelet packet transform
of AE and vibration waveforms because it provides a
versatile wavelet toolbox and also offers the possibility
of programming. After AE and vibration waveforms were
loaded into MATLAB, wavelet pack transform was carried
out to decompose the original signal into its wavelet
packets. Decomposition was based on ‘db20” wavelet (a
member of the Daubechies wavelets family) and three
levels for vibration signal and four levels of analysis for
AE signal. Each vibration signal was decomposed to 8
wavelet packets, namely wavelet packet (3,0), (3,1), ..., 3,
15) which represent the frequency band [0-1.25], [1.25-

]
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Fig. 7 Wavelet packet decomposition tree at level 3
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Fig. 8 Three-level wavelet packet decomposition of a
vibration signal
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- 2.5], ..., [8.75-10] kHz, respectively as shown in Fig. 8.

Because the vibration signals were acquired at sampling
rate of 20 kHz, frequencies up to 10 kHz were considered.

For AE signal, each signal was decomposed to 16
wavelet packets, namely wavelet packet (4,0), (4,1), ...,
(4, 15) which represent the frequency band [0-125], [125-
250], ..., [1875-2000] kHz, respectively. Frequencies up
to 2 MHz were considered because the AE signals were
acquired at sampling rate of 4 MHz. Obviously, the wave-
let packet (4,0), (4,1), ..., (4,7) corresponds to the frequency
band of 0-1000 kHz which covers the AE signal frequency
in this study and were used for signal deconiposition. The
family of Daubechies wavelets was chosen because it
compactly supports orthonormal wavelets, thus making
wavelet packet analysis practicable(lo). The RMS of each
frequency band-packet was used to describe the changing
feature of the AE and vibration signals which are influ-

enced by the wear size and cutting conditions®'".

4, Neural networks

Neural networks are non-linear mapping models that
are organized in layers each consisting of neurons, which
are linked by weighed connections. In this approach the
relationships between input and output variables are
developed through a training process in which sets of
inputs are applied to the network and the resuiting sets
of outputs are compared with known correct values. The
training data set is cycled through the network until the
error is less than an acceptable value. The trained net-
works are used to predict outputs of inputs which are not
used in the training phase.

The architecture of a three-layer feed-forward neural

network®*'?

was used in this study. This neural network
used a hyperbolic-tangent sigmoid transfer function, which
is a good trade off for the neural networks where speed
is important and the exact shape of the transfer function
is not™. In this study, the Levenberg-Marquardt algorithm
is used in training neural networks in order to obtain
neural networks with good generalization capability. This
algorithm appears to be the fastest method for training

moderate-sized feed-forward neural networks'>. The
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learning process was stopped (i.e., neural network had

converged) when the calculated output values were close

to the desired target values within an acceptable mean-

square error (MSE) value (MSE < MSEgq = 107).
Seven neural network architectures, shown in Fig. 9,

were designed as follows:

1. NN-AE: Input 16 wavelet packet-RMS values of AE
signals from two AE sensors and cutting conditions.

2. NN-V: Input 8 wavelet packet-RMS values of vibration
signals and cutting conditions.

3. NN-C: Input 2 signal-RMS values of spindle and feed
motor currents and cutting conditions.

4. NN-AE-V: Input 16 wavelet packet-RMS values of AE
signals, 8 wavelet packet-RMS values of vibration
signals and cutting conditions.

5. NN-AE-C: Input 16 wavelet packet-RMS values of AE
signals, 2 signal-RMS values of spindle and feed motor
currents and cutting conditions.

6. NN-V-C: Input 8 wavelet packet-RMS values of vib-
ration signals, 2 signal-RMS values of spindle and feed
motor currents and cutting conditions.

7. NN-All: Input all of features extracted from all sensors

and cutting conditions.

5. Results and discussion

The tool wear curve in Fig. 10 shows patterns of the
flank wear at different cutting speeds and feeds, as a
function of cutting length. The cutting length is the
accumulated depth of holes drilled during each test. The
Vg values show faster flank wear and shorter drill life
with higher cutting speed and feed. However, the relation-

Input
layer

Hidden

Fig. 9 Seven neural network architectures
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ship among the AE signals, vibration signals, current
signals and drill wear was not simple. Therefore the drill
wear estimated from the extracted features of all sensor
signals were analyzed by neural networks which are non-
linear mapping models. Based on the aforementioned
neural network model for this study, number of neurons
to be used in the hidden layer of a neural network is
critical in order to avoid underfitting and overfitting pro-
blem. There is no single rule to determine the optimum
number of neurons in the hidden layer required for optimum
performance. However, number of hidden layer neurons
is usually found with trial-and-error approach(g’g’lz).

In this study, the number of neurons in hidden layer
was determined by a trial-and-error approach. Each network
architecture was testified for the average MSE of 10 trials
with the number of neurons from one(1) to twenty-five
(25) and the minimum value out of 25 average MSE deter-
mined the number of neurons. The number of neurons for
trial and error was set at the maximum value of 25 be-
cause the use of more processing elements in the hidden
layer not only required a larger number of training itera-
tions to converge but also added additional CPU load for
the tool failure diagnosis in real-time analysis. The Fig.
11 shows the minimum average MSE at the number of
hidden neurons 12, 7 and 5 for architectures of NN-AE,
NN-V and NN-C, respectively. Similar approach was re-
peated for other neural network architectures to determine
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the number of hidden layer neurons. Consequently, the
number of hidden neurons 20, 13, 10 and 22 were chosen
for architectures of NN-AE-V, NN-AE-C, NN-V-C and
NN-All, respectively.
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Fig. 11 Average MSE values of neural network architec-
tures NN-AE, NN-V and NN-C as a function
of the number of neurons in the hidden layer

Table 1 shows a summary of the performance of the
neural networks with different architectures during testing
phase in terms of percentage of correct prediction. The
testing phase helps the neural network architectures to
generalize and increase its declaration accuracy. The re-
sults indicated that neural networks with input features
extracted from two or three types of sensors were more
accurate than the networks with individual sensor input.
The overall average correct predictions indicated that the
best performance was obtained by the neural network
architecture with input features from AE and vibration
sensors, i.e. NN-AE-V. The performance of the architec-
ture with input features by AE and current sensors was
slightly higher than that by vibration and current sensors,
but the difference was almost negligible and within the
range of statistical error bound.

In order to further verify the feasibility of using neural
networks for the diagnosis of drill wear, the seven archi-

tectures were tested with untrained data sets that were

Table 1 Performance of neural networks with different architectures in the testing phase

Drilling conditions

Percentage of correct predictions

C“t(tg‘/iﬁsfl’)eed (mil/eer‘iv) NN-AE | NN-v NN-C | NN-AE-V | NN-AE-C | NN-V-C | NN-All
2 0.13 79.58 82.55 80.69 88.26 85.93 82.71 86.25
2 0.15 82.41 81.70 81.47 92.15 87.82 85.18 90.73
2 0.17 87.17 86.19 85.53 91.48 93.45 8334 88.68
26 0.13 81.96 79.56 81.20 91.88 81.48 82.35 91.27
26 0.15 88.25 86.66 88.28 90.16 90.76 85.17 9436
26 0.17 88.74 85.92 86.42 95.88 9224 89.37 93.39
30 0.13 89.58 85.95 84.38 97.41 86.65 91.66 93.57
30 0.15 85.08 82.11 85.58 96.51 88.52 88.02 85.55
30 0.17 90.16 89.68 82.04 96.58 92.69 91.42 93.92

Average 86.67 83.83 83.95 9337 88.36 86.58 90.86
24 0.18* 83.41 86.44 72.67 95.14 80.10 83.32 86.76
28 0.14* 87.68 80.89 79.53 89.35 92.18 83.36 90.58
3% 0.12* 85.58 79.04 79.44 94.64 83.89 87.74 91.44
Average* 85.56 82.12 77.21 93.04 85.39 84.81 89.60
Overall average 86.37 83.36 82.27 93.28 87.55 86.14 90.54

*Untrained data sets; Signals from these conditions were not used in the training phase
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acquired under the drilling conditions different from those
used for training the neural networks. The performance
of all architectures except NN-C was satisfactory, although
it was less accurate than the performance for the cutting
conditions used for training. The neural network archi-
tecture with individual current sensor input, not only ob-
tained the lowest performance, but the difference in the
percentage of correct prediction between trained and un-
trained also became much larger. Because the line voltage
of power supply might not be constant throughout the
experiment due to the line voltage might change over
time to time in the shop floor where the machining was
carried out. This point also caused the architecture of
NN-AII not to obtain the best performance in this study,
even though the extracted features from AE and vibration
signals offset the loss of sensitivity in current sensor
domain. This indicated that the percentage of correct pre-
diction was not increased with the number of sensor
fusion, with rather depending on the sensitivity of signal
input with proper feature extraction method.

6. Conclusion

A multi-layer feed-forward neural network with Levenberg-
Marquardt training algorithm was developed and applied
to sensor fusion system to be used for drifl-wear monitoring,
The performance of seven different neural network archi-
tectures was tested and found to be sensitive to the type
of input data. The neural networks with input features
extracted from sensor fusion were more accurate than the
networks with individual sensor input. The sensor fusion
of AE and vibration signal features extracted by RMS-
WPT analysis as the input resulted in the best perfor-
mance at a correct drill wear prediction of 93%. In addi-
tion, the performance of neural network based on sensor
fusion was not increased with the number of sensor fusion,
with rather depending on the extracted feature of signals
input which optimally offset the loss of sensitivity to each
other. The results showed that once the neural network
was properly trained, it could be a powerful and reliable
tool to solve the classification and pattern recognition
problems of such sensor fusion as being acquired in the
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tool-condition monitoring applications.
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