• Title/Summary/Keyword: Levenberg-Marquardt Method

Search Result 89, Processing Time 0.032 seconds

Determination of Equivalent Vehicle Load Factors for Flat Slab Parking Structures Using Artificial Neural Networks (인공 신경망을 이용한 플랫 슬래브 주차장 구조물의 등가차량하중계수)

  • 곽효경;송종영
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.115-124
    • /
    • 2003
  • In this paper, the effects of vehicle loads on flat slab system are investigated on the basis of the previous studies for beam-gilder parking structural system. The influence surfaces of flat slab for a typical design section are constructed lot the purpose of obtaining maximum member forces under vehicle loads. In addition, the equivalent vehicle load factors for flat slab parking structures are suggested using artificial neural network. The network responses we compared with the results obtained by numerical analyses to verify the validation of Levenberg-Marquardt algorithm adopted as training method in this Paper. Many parameter studies for the flat slab structural system show dominant vehicle load effects at the center positive moments in both column and middle strips, like the beam-girder parking structural system.

Estimation of City Bus Delay Element using Levenberg-Marquardt (Levenberg-Marquardt알고리즘을 이용한 시내버스 지연요소 추정)

  • Lee, Jin-Woo;Lee, Hyun-Mi;Lee, Hyeon-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.493-498
    • /
    • 2017
  • Recently, traffic data is analyzed for efficiency of bus operation, D2D(: Door to Door) service, and self-driving of public transportation. However, various studies have been carried out to predict the delay time of public transportation, especially buses, but the research to date has been insufficient due to limitations of simple analysis and data acquisition. In this study, delay time estimation is performed by collecting and processing data such as day of the week, weather, and time of day based on bus operation information. The proposed method in this paper can be applied to autonomous public transport and public traffic control system by improving the accuracy by adding variables in the future.

Precise Edge Detection Method Using Sigmoid Function in Blurry and Noisy Image for TFT-LCD 2D Critical Dimension Measurement

  • Lee, Seung Woo;Lee, Sin Yong;Pahk, Heui Jae
    • Current Optics and Photonics
    • /
    • v.2 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • This paper presents a precise edge detection algorithm for the critical dimension (CD) measurement of a Thin-Film Transistor Liquid-Crystal Display (TFT-LCD) pattern. The sigmoid surface function is proposed to model the blurred step edge. This model can simultaneously find the position and geometry of the edge precisely. The nonlinear least squares fitting method (Levenberg-Marquardt method) is used to model the image intensity distribution into the proposed sigmoid blurred edge model. The suggested algorithm is verified by comparing the CD measurement repeatability from high-magnified blurry and noisy TFT-LCD images with those from the previous Laplacian of Gaussian (LoG) based sub-pixel edge detection algorithm and error function fitting method. The proposed fitting-based edge detection algorithm produces more precise results than the previous method. The suggested algorithm can be applied to in-line precision CD measurement for high-resolution display devices.

The Study on the SPICE Model Parameter Extraction Method for the Schottky Diode Under DC Forward Bias (DC 순방향 바이어스 인가조건에서 Schottky 다이오드의 SPICE 모델 파라미터 추출 방법에 관한 연구)

  • Lee, Un-Gu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.439-444
    • /
    • 2016
  • The method for extracting the SPICE model parameter of Schottky diode under DC forward bias is proposed. A method for improving the accuracy of the SPICE model parameter at various temperatures is proposed. Three analysis steps according to the magnitude of the current is used in order to extract the parameters effectively. At each analysis step, initial parameters are calculated by using the current-voltage equations and the Levenberg-Marquardt analysis is proceeded. To verify the validity of the proposed method, the SPICE model parameters for the BAT45 and FSV1045 under DC forward bias is extracted. Schottky diode currents obtained from the proposed method shows the average relative error of 6.1% and 9% compared with the measured data for the BAT45 and FSV1045 sample at various temperatures.

LM-BP algorithm application for odour classification and concentration prediction using MOS sensor array (MOS 센서어레이를 이용한 냄새 분류 및 농도추정을 위한 LM-BP 알고리즘 응용)

  • 최찬석;변형기;김정도
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.210-210
    • /
    • 2000
  • In this paper, we have investigated the properties of multi-layer perceptron (MLP) for odour patterns classification and concentration estimation simultaneously. When the MLP may be has a fast convergence speed with small error and excellent mapping ability for classification, it can be possible to use for classification and concentration prediction of volatile chemicals simultaneously. However, the conventional MLP, which is back-Propagation of error based on the steepest descent method, was difficult to use for odour classification and concentration estimation simultaneously, because it is slow to converge and may fall into the local minimum. We adapted the Levenberg-Marquardt(LM) algorithm [4,5] having advantages both the steepest descent method and Gauss-Newton method instead of the conventional steepest descent method for the simultaneous classification and concentration estimation of odours. And, We designed the artificial odour sensing system(Electronic Nose) and applied LM-BP algorithm for classification and concentration prediction of VOC gases.

  • PDF

A Data Fitting Technique for Rational Function Models Using the LM Optimization Algorithm (LM 최적화 알고리즘을 이용한 유리함수 모델의 데이터 피팅)

  • Park, Jae-Han;Bae, Ji-Hun;Baeg, Moon-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.8
    • /
    • pp.768-776
    • /
    • 2011
  • This paper considers a data fitting problem for rational function models using the LM (Levenberg-Marquardt) optimization method. Rational function models have various merits on representing a wide range of shapes and modeling complicated structures by polynomials of low degrees in both the numerator and denominator. However, rational functions are nonlinear in the parameter vector, thereby requiring nonlinear optimization methods to solve the fitting problem. In this paper, we propose a data fitting method for rational function models based on the LM algorithm which is renowned as an effective nonlinear optimization technique. Simulations show that the fitting results are robust against the measurement noises and uncertainties. The effectiveness of the proposed method is further demonstrated by the real application to a 3D depth camera calibration problem.

Nonlinear Optimization Method for Multiple Image Registration (다수의 영상 특징점 정합을 위한 비선형 최적화 기법)

  • Ahn, Yang-Keun;Hong, Ji-Man
    • Journal of Broadcast Engineering
    • /
    • v.17 no.4
    • /
    • pp.634-639
    • /
    • 2012
  • In this paper, we propose nonlinear optimization method for feature matching from multiple view image. Typical solution of feature matching is by solving linear equation. However this solution has large error due to nonlinearity of image formation model. If typical nonlinear optimization method is used, complexity grows exponentially over the number of features. To make complexity lower, we use sparse Levenberg-Marquardt nonlinear optimization for matching of features over multiple view image.

Estimation of Camera Motion Parameter using Invariant Feature Models (불변 특징모델을 이용한 카메라 동작인수 측정)

  • Cha, Jeong-Hee;Lee, Keun-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.10 no.4 s.36
    • /
    • pp.191-201
    • /
    • 2005
  • In this paper, we propose a method to calculate camera motion parameter, which is based on efficient invariant features irrelevant to the camera veiwpoint. As feature information in previous research is variant to camera viewpoint. information content is increased, therefore, extraction of accurate features is difficult. LM(Levenberg-Marquardt) method for camera extrinsic parameter converges on the goat value exactly, but it has also drawback to take long time because of minimization process by small step size. Therefore, in this paper, we propose the extracting method of invariant features to camera viewpoint and two-stage calculation method of camera motion parameter which enhances accuracy and convergent degree by using camera motion parameter by 2D homography to the initial value of LM method. The proposed method are composed of features extraction stage, matching stage and calculation stage of motion parameter. In the experiments, we compare and analyse the proposed method with existing methods by using various indoor images to demonstrate the superiority of the proposed algorithm.

  • PDF

Impedance Imaging of Binary-Mixture Systems with Regularized Newton-Raphson Method

  • Kim, Min-Chan;Kim, Sin;Kim, Kyung-Youn
    • Journal of Energy Engineering
    • /
    • v.10 no.3
    • /
    • pp.183-187
    • /
    • 2001
  • Impedance imaging for binary mixture is a kind of nonlinear inverse problem, which is usually solved iteratively by the Newton-Raphson method. Then, the ill-posedness of Hessian matrix often requires the use of a regularization method to stabilize the solution. In this study, the Levenberg-Marquredt regularization method is introduced for the binary-mixture system with various resistivity contrasts (1:2∼1:1000). Several mixture distribution are tested and the results show that the Newton-Raphson iteration combined with the Levenberg-Marquardt regularization can reconstruct reasonably good images.

  • PDF

Hybrid evolutionary identification of output-error state-space models

  • Dertimanis, Vasilis K.;Chatzi, Eleni N.;Spiridonakos, Minas D.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.427-449
    • /
    • 2014
  • A hybrid optimization method for the identification of state-space models is presented in this study. Hybridization is succeeded by combining the advantages of deterministic and stochastic algorithms in a superior scheme that promises faster convergence rate and reliability in the search for the global optimum. The proposed hybrid algorithm is developed by replacing the original stochastic mutation operator of Evolution Strategies (ES) by the Levenberg-Marquardt (LM) quasi-Newton algorithm. This substitution results in a scheme where the entire population cloud is involved in the search for the global optimum, while single individuals are involved in the local search, undertaken by the LM method. The novel hybrid identification framework is assessed through the Monte Carlo analysis of a simulated system and an experimental case study on a shear frame structure. Comparisons to subspace identification, as well as to conventional, self-adaptive ES provide significant indication of superior performance.