• Title/Summary/Keyword: Levee Slope

Search Result 61, Processing Time 0.028 seconds

A Study for Seepage Control of Levee with a Pervious Toe Drain (제내 비탈끝 배수공을 이용한 제방의 침투조절에 관한 연구)

  • Kong, Young-San;Kang, Tae-Uk;Lee, Sang-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.569-581
    • /
    • 2012
  • The levee is the facility which is constructed along with river for the protection of landside and for passage of water when there is a flood. When the seepage is exposed to the atmosphere on the landside surface of levee, it may eventually lead to levee failure. The seepage water may be removed from the landside surface by a properly designed drainage system. The purpose of the study is to show seepage control effect of a pervious toe drain, and to compare two drainage methods of a pervious toe drain. One is the pervious toe drain suggested by U.S. Army Corps of Engineers (USACE) and the other is that suggested by Japan Institute of Construction Engineering (JICE). The levee model constructed has the following dimension: the base width is 2.6 m; the crest width is 0.4 m; the side slope 1 : 2. The water depth in the riverside is 0.5 m. The shape of the toe drain by USACE is triangular. The shape of the toe drain by JICE is rectangular. They were installed with the base length of 0.4 m. The levee model without the toe drain showed saturation surface on the land side in the experiment but not with the toe drain. The experiment results was applied to a numerical analysis model using SEEP/W to calibrate and verify. The numerical analysis results for 35 cm and 30 cm drain width showed that the drain by JICE is a little bit safer than the drain by USACE. It is also easier to construct the toe drain by JICE. The results in the study would be applied to plan the seepage control for a levee with pervious toe drain.

A Study on Stability of Levee Revetment in Meandering Channel (만곡수로 내의 호안 안정성 연구)

  • Kim, Sooyoung;Yoon, Kwang Seok;Kim, Hyung-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.12
    • /
    • pp.1077-1087
    • /
    • 2015
  • The levee protect lifes, houses, and properties by blocking overflow of river. The revetment is forced to be covered on the slope of levee in order to prevent erosion. The stability of revetment is very important enough to directly connected to the stability of levee. In this study, the weak points of revetment on meandering channel were found by movable revetment experiment and the velocity and the water surface elevation (WSE) were measured at main points. The 3-D numerical simulations were performed under same conditions with experiment. And unclear flow characteristics by the limit of measuring instruments were analyzed through numerical simulation. Consequently, the section of large wall shear stress and the failure section are almost the same. Despite of small wall shear stress, the revetments located at right bank were carried away because of circulation zone due to secondary flow by meandering. With existing riprap design formula, the sizes of riprap determined using maximum local velocity were 1.5~4.7 times greater than them using mean velocity. As a result of this study, it is necessary to calculate the size of riprap in other ways for meandering and straight channel. At a later study, if the weighted value considered the radius of curvature and shape of hydraulic structure is applied to riprap design formula, it is expected that the size of revetment was evaluated rationally and accurately.

Development of Depositional Landforms in Upstream Reach of Ulsan Sayeon Dam Lake (울산 사연호 상류의 퇴적지형 발달)

  • Chang, Mun-Gi
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.4
    • /
    • pp.409-421
    • /
    • 2007
  • The purpose of this paper is to consider the formation processes and depositional conditions of bars formed at the upper-stream part of Sayeon Dam since Sayeon Dam construction in 1964. Results of analyzing the shape characteristics of bars and their sediment grain size distribution are as follow: Firstly, bars are able to categorized as subaqueous bars (A, B), mid-channel bars(C, D), and tributary side-bars(E). Secondly, the outline of bars has longish along the flow path, and their height lowers more and more going towards downstream. Also the height of bar surface tend to heighten from flow path to mountain slope. However, the near part of A is comparatively higher than its distant part, A is defined as a subaqueous natural levee and back swamp. Thirdly, the average particle size of A and B become smaller toward mountain slope. In transportation style, ratio of suspended load become higher toward mountain slope. Fourthly, sorting is worse to very worse according with lake's random changable water level. Fifthly, bar A and B were formed by vertical sedimentation of sediments according as sediments transported along flow path in the subaqueous conditions were spreaded out of flow path. C and D were formed by bed load as flood level lowered. And E was formed by vertical sedimentation while stream flow stopped in tributary's mouth areas with the water level heightening.

  • PDF

Experimental Study of Collapse Delay Effect of Riprap on Dam Slope (사력댐 사석 보호공의 붕괴 지연 효과에 대한 실험 연구)

  • Jeong, Seokil;Kim, Seung Wook;Kim, Hong Taek;Lee, Seung Oh
    • Journal of Korean Society of Disaster and Security
    • /
    • v.11 no.1
    • /
    • pp.31-38
    • /
    • 2018
  • The 99.1% of small dam and most of the levees in Korea are soil dam which can be constructed with lower cost and less effort compared with ones made of concrete. However, they are so vulnerable to overflow. Sudden collapses of these strucrues lead to increase flow rate rapidly, which may cause catastrophic problems in downstream regions. In this study, the experimental study on the collapse delay effect of riprap that was laid on slope of soil levee was carried out. A prismatic rectangular open channel was used and three different sizes of the riprap were installed on slope of a scaled earth dam. A new formula for the collapse time of the levee with the installation of riprap was presented, using the previous researches and the dimensional analysis. In this process, an unsteady flow condition was considered to derive the deviation time of the riprap. And additional experiments were conducted to understand the effect of reinforcement of riprap, and it was found that the reinforcement of riprap was more effective than twice sizing of intial riprap. If the collapse time is delayed, EAP (Emergency Action Plan) and forecasting can greatly reduce the degree of flood damage. Also, it will be meaningful that the results of this study are used for river design.

Hydraulic Application of Grass Concrete In River Environment (하천환경에서의 그라스콘크리트의 적용성 연구)

  • Jang, Suk-Hwan;Nam, Yong-Hyuk;Kim, Seo-Young;Park, Seong-Beom;Park, Ung-Seo;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.472-477
    • /
    • 2006
  • This study aims at investigating the failure cases of the pre-cast block system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river slope or levee which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, it survived the 8 m/sec maximum flow velocity. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

Characteristics of Roughness Variation in Grassed Inner Slope during Levee Overflow (제방 월류시 뒷비탈 식생 조도계수 변화 특성 검토)

  • Yoon, Kwang-Seok;Koh, Jung-Hwan;Kim, Jong-Ho;Chu, Hyun-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1858-1862
    • /
    • 2008
  • 최근에 발생하는 이상홍수로 인하여 설계규모를 초과하는 홍수가 발생하여 월류에 의한 제방붕괴 피해가 증가하고 있다. 초과규모의 홍수가 유하하더라도 월류에 의해서 제방이 붕괴되는 것과 붕괴되지 않고 단순히 월류하는 경우의 피해 정도는 매우 다른 양상으로 나타난다. 제방이 붕괴되는 경우, 제내지 유입량 및 유입기간의 증가로 인명 및 재산피해가 가중된다. 따라서 인구가 집중되고 재산이 밀집되어 있는 지역에 대해서는 제방붕괴에 의한 피해를 감소시키기 위한 특별한 대책이 필요하다. 본 연구에서는 기존 제방의 식생이 제방 월류 붕괴에 미치는 영향을 추정하기 위하여 수리실험을 수행하였다. 실험수로에 제작된 제방 뒷비탈에 인조식생을 부착시켜 유량에 따른 수심과 유속을 측정하였으며, 측정결과를 이용하여 조도계수를 산정하였다. 산정된 조도계수를 CIRIA(1987)의 보고서에 조도계수 산정 방법과 비교하고 분석하였다. 분석 결과, CIRIA(1987)에서 제시하고 있는 1V:2H제방의 조도계수 0.02보다 큰 값이 산정되었음을 알 수 있었다. 향후, 실제 식생에 대한 실험을 수행하여 흐름특성별 조도계수에 대한 추가적인 검토가 필요할 것으로 사료된다.

  • PDF

Compatibility inspection for the way for Decision about Bight Flow Profile of Standard River Design (하천설계기준의 만곡부 수면형 결정 방법에 대한 적용성 검증)

  • Choi, Han-Kuy;Che, Hong-Gi;Baek, Hyo-Sun
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.43-51
    • /
    • 2006
  • Through the result of calculating the deviation between the value calculated from two-dimensional number formula, one-dimensional number interpretation, and curving part water surface type calculation method, we could confirmed that the deviation is reduced more than 50% when we use curving part water surface type calculation method. Also it was confirmed that there occurs the reduction rate of maximum 59% as the result of comparing with one-dimensional number interpretation since the reduction rate of safe room height was 20%, in 500 CMS of flood water quantity when we planted the construction of levee by curving part water surface type calculation method. And therefore, we have confirmed that the curving water surface type calculation method can be used as a simple formula in rivers with water quantity less than 500 CMS that flows in and out in Jess than 90 degree angle.

  • PDF

Treatment of the Bed Slope Source Term for 2-Dimensional Numerical Model Using Quasi-steady Wave Propagation Algorithm (Quasi-steady Wave Propagation 알고리듬을 이용한 2차원 수치모형의 하상경사항 처리)

  • Kim, Tae-Hyung;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.145-156
    • /
    • 2011
  • Two dimensional numerical model of high-order accuracy is developed to analyze complex flow including transition flow, discontinuous flow, and wave propagation to dry bed emerging at natural river flow. The bed slope term of two dimensional shallow water equation consisting of integral conservation law is treated efficiently by applying quasi-steady wave propagation scheme. In order to apply Finite Volume Method using Fractional Step Method, MUSCL scheme is applied based on HLL Riemann solver, which is second-order accurate in time and space. The TVD method is applied to prevent numerical oscillations in the second-order accurate scheme. The developed model is verified by comparing observed data of two dimenstional levee breach experiment and dam breach experiment containing structure at lower section of channel. Also effect of the source term is verified by applying to dam breach experiment considering the adverse slope channel.

Empirical Formula for Propagation Distance of Flood Wave-front in Flat Inundation Area without Obstacle due to Levee Breach (장애물이 없는 평탄지형 제내지에서의 범람홍수파 선단 전파거리 실험식 산정)

  • Yoon, Kwang-Seok;Lee, Jong-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.833-840
    • /
    • 2007
  • The experimental study was carried out to investigate propagation distance of flood wave due to levee breach in a flat inundation area without obstacle. Hitter solution was considered to formulate the experimental results and a representative form was written referring to existing researches. As a result of experiments, it was found that the propagation velocity of the wave front in inundation area was significantly influenced by the initial water level in a channel, which was similar to flow in a channel due to dam break. An empirical formula was also suggested using the experimental results. The dimensionless propagation distance L can be written as the power function of dimensionless time T Coefficients k and m were varied with the dimensionless time T whereas k and m in Ritter solution were 2 and 0, respectively. The variation of coefficients in the relationship between L and T was influenced by the water depth in the inundation area and the fact proved that the changing points of L in the slope of relationship between L and T are the same to those of relationship between the dimensionless maximum water depth in the inundation area, $h_{max}$ and L.

Numerical Analysis on Pore Water Pressure Reduction at Embankment Foundation of Fill Dam and Levee by Relief Well (감압정에 의한 필 댐 및 제방 기초지반의 간극수압 저감효과 수치해석)

  • Chang, Jaehoon;Yoo, Chanho;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.2
    • /
    • pp.25-36
    • /
    • 2022
  • In this study, seepage control effect of relief well was evaluated quantitatively on embankment of small fill dam and levee. Seepage analysis of dam and levee were carried out according to the permeability of fill material and foundation and to analyze behaviour characteristics of seepage. The up-lift pressure at toe of embankment was analyzed which is generated by seepage according to relief well installation condition. The relief well could reduce pore water pressure which is to cause piping or up-lift pressure at foundation ground of embankment and it does not be influenced on geometric condition such as dam height and slope incline. In case of relative low permeable ground, the pore water pressure reduction effect of relief well was decreased compare with high permeable ground but it shows pore water pressure reduction effect compare with no relief well condition. The reduction effect of relief well shows relative gap according to diameter and penetration length of relief well and the installation length of relief well is the most effective factor for seepage control.