• Title/Summary/Keyword: Leuconostoc lactis

Search Result 73, Processing Time 0.02 seconds

Novel Strain Leuconostoc lactis DMLL10 from Traditional Korean Fermented Kimchi as a Starter Candidate for Fermented Foods

  • Yura Moon;Sojeong Heo;Hee-Jung Park;Hae Woong Park;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.12
    • /
    • pp.1625-1634
    • /
    • 2023
  • Leuconostoc lactis strain DMLL10 was isolated from kimchi, a fermented vegetable, as a starter candidate through safety and technological assessments. Strain DMLL10 was susceptible to ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, and tetracycline. It did not show any hemolytic activity. Regarding its phenotypic results related to its safety properties, genomic analysis revealed that strain DMLL10 did not encode for any toxin genes such as hemolysin found in the same genus. It did not acquire antibiotic resistance genes either. Strain DMLL10 showed protease activity on agar containing NaCl up to 3%. The genome of DMLL10 encoded for protease genes and possessed genes associated with hetero- and homo-lactic fermentative pathways for lactate production. Finally, strain DMLL10 showed antibacterial activity against seven common foodborne pathogens, although bacteriocin genes were not identified from its genome. These results indicates that strain DMLL10 is a novel starter candidate with safety, enzyme activity, and bacteriocin activity. The complete genomic sequence of DMLL10 will contribute to our understanding of the genetic basis of probiotic properties and allow for assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.

Bacteremia caused by Leuconostoc species : 6-case series

  • Oh, Ki Jong;Jung, Dong Sik;Ko, Kwan Soo;Lee, Ho Jin;Park, Jun Yong;Lee, Hyuck
    • Kosin Medical Journal
    • /
    • v.33 no.3
    • /
    • pp.422-430
    • /
    • 2018
  • Leuconostoc species are Gram-positive coccobacilli and are used in dairy products and are intrinsically resistant to vancomycin. Leuconostoc infections are rare in humans, usually occurring in immune-compromised patients. We describe 6 patients with Leuconostoc bacteremia at Dong-A university hospital between 1990 and 2015. One isolate (L. lactis) was identified to species level using 16S rRNA gene sequencing analysis. All patients had underlying diseases and 5 patients underwent procedures that interrupted the normal integumentary defense. Four patients died within 30 days after being identified as carrying Leuconostoc species.

Glucosyl Rubusosides by Dextransucrases Improve the Quality of Taste and Sweetness

  • Ko, Jin-A;Ryu, Young Bae;Park, Ji-Young;Kim, Cha Young;Kim, Joong Su;Nam, Seung-Hee;Lee, Woo Song;Kim, Young-Min
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.3
    • /
    • pp.493-497
    • /
    • 2016
  • Glucosyl rubusosides were synthesized by two dextransucrases. LcDexT was obtained from Leuconosotoc citreum, that LlDexT was obtained from Leuconostoc lactis. LcDexT and LlDexT regioselectively transferred a glucosyl residue to the 13-O-glucosyl moiety of rubusoside with high yield of 59-66% as analyzed by TLC and HPLC. Evaluation of the sweetness of these glucosyl rubusosides showed that their quality of taste, in particular, was superior to that of rubusoside. These results indicate that transglucosylation at the 13-O-glucosyl moiety of rubusoside by different regioselective dextransucrases can be applicable for increasing its sweetness and quality of taste.

Isolation and Identification of Lactic Acid Bacteria from Commercial Kimchi (시판김치로부터 젖산균의 분리 및 동정)

  • Ko, Jung-Lim;Oh, Chang-Kyung;Oh, Myung-Cheol;Kim, Soo-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.732-741
    • /
    • 2009
  • This study was carried out to identify lactic acid bacteria isolated from commercial Kimchi. Twelve lactic acid bacteria strains were isolated from Chinese cabbage kimchi (Baechu kimchi) that was fermented for 4 days at room temperature after making kimchi, 6 strains from pickled ponytail radishes (Chongkak kimchi) that was fermented for 2 days, and 15 strains in radish cube kimchi (Kaktugi) that was fermented for 5 days, and 23 strains were isolated in pickled Wakegi (Pa kimchi) that was fermented for 4 days. Eight strains among the lactic acid bacteria of 12 strains isolated from Baechu kimchi (pH 4.0) were identified as Lactobacillus plantarum, 1 strain as Leuconostoc lactis, 2 strains as Lactobacillus casei subsp. pseudoplantarum, and 1 strain as Lactobacillus sake. Three strains among the lactic acid bacteria of 6 strains isolated from Chongkak kimchi (pH 4.5) were identified as Leuconostoc paramesenteroides, 2 strains as Leuconostoc mesenteroides subsp. mesenteroides, and 1 strain as Lactobacillus plantarum. Two strains among the 15 strains isolated in Kaktugi (pH 4.0) were identified as Leuconostoc lactis, 3 strains as Leuconostoc mesenteroides subsp dextranicum, 4 strains as Lactobacillus casei subsp. pseudoplantarum, and 4 strains as Lactobacillus coryniformis subsp. torquens. Twenty-two strains among the 23 strains isolated from Pa kimchi (pH 4.1) identified as L. plantarum and 1 strain was as Lactobacillus sake. From the results above, the dominant species of Baechu kimchi was confirmed as L. plantarum, Chongkak kimchi as L. paramesenteroides, Kaktugi as L. casei subsp. pseudoplantarum and L. coryniformis subsp. torquens, and Pa kimchi as L. plantarum.

Bioconversion of Ginsenoside Rb1 to Compound K using Leuconostoc lactis DC201

  • Piao, Jin-Ying;Kim, Yeon-Ju;Quan, Lin-Hu;Yang, Dong-Uk;Min, Jin-Woo;Son, Seon-Heui;Kim, Sang-Mok;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.24 no.6
    • /
    • pp.712-718
    • /
    • 2011
  • Ginseng (Panax ginseng) is frequently used in Asian countries as a traditional medicine. The major components of ginseng are ginsenosides. Among these, ginsenoside compound K has been reported to prevent the formation of malignancy and metastasis of cancer by blocking the formation of tumor and suppressing the invasion of cancer cells. In this study, ginsenoside $Rb_1$ was converted into compound K, via secreted ${\beta}$-glucosidase enzyme from the Leuconostoc lactis DC201 isolated, which was extracted from Kimchi. The strain DC201 was suspended and cultured in MRS broth at $37^{\circ}C$. Subsequently, the residue from the cultured broth supernatant was precipitated with EtOH and then dissolved in 20 mM sodium phosphate buffer (pH 6.0) to obtain an enzyme liquid. Meanwhile, the crude enzyme solution was mixed with ginsenoside $Rb_1$ at a ratio of 1:4 (v/v).The reaction was carried out at $30^{\circ}C$ and 190 rpm for 72 hours, and then analyzed by TLC and HPLC. The result showed that ginsenoside Rb1 was transformed into compound K after 72 hours post reaction.

Inhibition of Spoilage and Pathogenic Bacteria by Lacticin JW3, a Bacteriocin Produced by Lactococcus lactis JW3 Isolated from Commercial Swiss Cheese Products

  • Jeong, Min-Yong;Baek, Hyeon-Dong
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.558-561
    • /
    • 2000
  • Strain JW3 was isolated from commercial Swiss cheese products and identified as a bacteriocin producer. Lactococcus lactis JW3 showed a broad spectrum of activity against most of the non-pathogenic and pathogenic microorganisms tested by the modified deferred method. Lacticin JW3 also showed a relatively broad spectrum of activity against non-pathogenic and pathogenic microorganisms as assessed using the spot-on-lawn method. It demonstrated a typical bactericidal mode of inhibition against Leuconostoc mesenteroides KCCM 11324.

  • PDF

Isolation of Leuconostoc and Weissella Species Inhibiting the Growth of Lactobacillus sakei from Kimchi (김치로부터 Lactobacillus sakei 생육저해 Leuconostoc 및 Weissella 속 균주의 분리)

  • Lee, Kwang-Hee;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • Kimchi is a group of traditional fermented vegetable foods in Korea and known to be the product of a natural mixed-fermentation process carried out principally by lactic acid bacteria (LAB). According to microbial results based on conventional identification, Leuconostoc mesenteroides and Lactobacillus plantarum were considered to be responsible for the good taste and over-ripening of kimchi, respectively. However, with the application of phylogenetic identification, based on 16S ribosomal RNA gene similarities, a variety of Leuconostoc and Lactobacillus species not detected in the previous studies have been isolated, together with a species in the genus Weissella. Additionally, Lactobacillus sakei has been accepted as the most populous LAB in over-ripened kimchi. In this study, Leuconostoc and Weissella species inhibiting the growth of Lb. sakei were isolated from kimchi for future applications to do with kimchi fermentation. From 25 kimchi samples, 378 strains in the genera Leuconostoc and Weissella were isolated and 68 strains identified as Lc. mesenteroides, Lc. citreum, Lc. lactis, W. cibaria, W. confusa, and W. paramesenteroides exhibited growth inhibition against Lb. sakei. Most of the strains also had antagonistic activities against Lb. brevis, Lb. curvatus, Lb. paraplantarum, Lb. pentosus, and Lb. plantarum. Their antagonistic activities against Lb. sakei were more remarkable at lower temperatures of incubation.

Natural Lactic Acid Bacteria Population and Silage Fermentation of Whole-crop Wheat

  • Ni, Kuikui;Wang, Yanping;Cai, Yimin;Pang, Huili
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1123-1132
    • /
    • 2015
  • Winter wheat is a suitable crop to be ensiled for animal feed and China has the largest planting area of this crop in the world. During the ensiling process, lactic acid bacteria (LAB) play the most important role in the fermentation. We investigated the natural population of LAB in whole-crop wheat (WCW) and examined the quality of whole-crop wheat silage (WCWS) with and without LAB inoculants. Two Lactobacillus plantarum subsp. plantarum strains, Zhengzhou University 1 (ZZU 1) selected from corn and forage and grass 1 (FG 1) from a commercial inoculant, were used as additives. The silages inoculated with LAB strains (ZZU 1 and FG 1) were better preserved than the control, with lower pH values (3.5 and 3.6, respectively) (p<0.05) and higher contents of lactic acid (37.5 and 34.0 g/kg of fresh matter (FM), respectively) (p<0.05) than the control. Sixty LAB strains were isolated from fresh material and WCWS without any LAB inoculation. These LAB strains were divided into the following four genera and six species based on their phenotypic, biochemical and phylogenetic characteristics: Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, Lactococcus lactis subsp. lactis, Lactobacillus buchneri, and Lactobacillus plantarum subsp. plantarum. However, the prevalent LAB, which was predominantly heterofermentative (66.7%), consisted of Leuconostoc pseudomesenteroides, Leuconostoc citreum, Weissella cibaria, and Lactobacillus buchneri. This study revealed that most of isolated LAB strains from control WCWS were heterofermentative and could not grow well at low pH condition; the selective inoculants of Lactobacillus strains, especially ZZU 1, could improve WCWS quality significantly.

Enzymatic Synthesis of Puerarin Glucosides Using Leuconostoc Dextransucrase

  • Ko, Jin-A;Ryu, Young Bae;Park, Tae-Soon;Jeong, Hyung Jae;Kim, Jang-Hoon;Park, Su-Jin;Kim, Joong-Su;Kim, Doman;Kim, Young-Min;Lee, Woo Song
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1224-1229
    • /
    • 2012
  • Puerarin (P), an isoflavone derived from kudzu roots, has strong biological activities, but its bioavailability is often limited by its low water solubility. To increase its solubility, P was glucosylated by three dextransucrases from Leuconostoc or Streptococcus species. Leuconostoc lactis EG001 dextransucrase exhibited the highest productivity of puerarin glucosides (P-Gs) among the three tested enzymes, and it primarily produced two P-Gs with a 53% yield. Their structures were identified as ${\alpha}$-$_D$-glucosyl-($1{\rightarrow}6$)-P (P-G) by using LC-MS or $^1H$- or $^{13}C$-NMR spectroscopies and ${\alpha}$-$_D$-isomaltosyl-($1{\rightarrow}6$)-P (P-IG2) by using specific enzymatic hydrolysis, and their solubilities were 15- and 202-fold higher than that of P, respectively. P-G and P-IG2 are easily applicable in the food and pharmaceutical industries as alternative functional materials.

Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis

  • Lee, Jungmin;Heo, Sojeong;Choi, Jihoon;Kim, Minsoo;Pyo, Eunji;Lee, Myounghee;Shin, Sangick;Lee, Jaehwan;Sim, Jaehun;Jeong, Do-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.298-303
    • /
    • 2021
  • Comparative genomic analysis was performed on eight species of lactic acid bacteria (LAB)-Lactococcus (L.) lactis, Lactobacillus (Lb.) plantarum, Lb. casei, Lb. brevis, Leuconostoc (Leu.) mesenteroides, Lb. fermentum, Lb. buchneri, and Lb. curvatus-to assess their glutamic acid production pathways. Glutamic acid is important for umami taste in foods. The only genes for glutamic acid production identified in the eight LAB were for conversion from glutamine in L. lactis and Leu. mesenteroides, and from glucose via citrate in L. lactis. Thus, L. lactis was considered to be potentially the best of the species for glutamic acid production. By biochemical analyses, L. lactis HY7803 was selected for glutamic acid production from among 17 L. lactis strains. Strain HY7803 produced 83.16 pmol/μl glutamic acid from glucose, and exogenous supplementation of citrate increased this to 108.42 pmol/μl. Including glutamic acid, strain HY7803 produced more of 10 free amino acids than L. lactis reference strains IL1403 and ATCC 7962 in the presence of exogenous citrate. The differences in the amino acid profiles of the strains were illuminated by principal component analysis. Our results indicate that L. lactis HY7803 may be a good starter strain for glutamic acid production.