Browse > Article
http://dx.doi.org/10.4014/jmb.1202.02007

Enzymatic Synthesis of Puerarin Glucosides Using Leuconostoc Dextransucrase  

Ko, Jin-A (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Young Bae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Tae-Soon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Jeong, Hyung Jae (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Jang-Hoon (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Su-Jin (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Joong-Su (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Doman (School of Biological Sciences and Technology and the Research Institute for Catalysis, Chonnam National University)
Kim, Young-Min (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Woo Song (Infection Control Material Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.9, 2012 , pp. 1224-1229 More about this Journal
Abstract
Puerarin (P), an isoflavone derived from kudzu roots, has strong biological activities, but its bioavailability is often limited by its low water solubility. To increase its solubility, P was glucosylated by three dextransucrases from Leuconostoc or Streptococcus species. Leuconostoc lactis EG001 dextransucrase exhibited the highest productivity of puerarin glucosides (P-Gs) among the three tested enzymes, and it primarily produced two P-Gs with a 53% yield. Their structures were identified as ${\alpha}$-$_D$-glucosyl-($1{\rightarrow}6$)-P (P-G) by using LC-MS or $^1H$- or $^{13}C$-NMR spectroscopies and ${\alpha}$-$_D$-isomaltosyl-($1{\rightarrow}6$)-P (P-IG2) by using specific enzymatic hydrolysis, and their solubilities were 15- and 202-fold higher than that of P, respectively. P-G and P-IG2 are easily applicable in the food and pharmaceutical industries as alternative functional materials.
Keywords
Puerarin; dextransucrase; Leuconostoc lactis; water solubility; transglucosylation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Benlhabib, E., J. I. Baker, D. E. Keyler, and A. K. Singh. 2004. Effects of purified puerarin on voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J. Med. Food 7: 180-186.   DOI   ScienceOn
2 Boue, S. M., T. E. Wises, S. Nehls, M. E. Burow, S. Elliott, C. H. Carter-Wientjes, et al. 2003. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem. 51: 2193-2199.   DOI   ScienceOn
3 Bradford, M. M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
4 Choi, C. H., S. H. Kim, J. H. Jang, J. T. Park, J. H. Shim, Y. W. Kim, and K. H. Park. 2010. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 90: 1179-1184.   DOI   ScienceOn
5 Chung, H. J., M. J. Chung, S. J. Houng, J. G. Jeun, D. K. Kweon, C. H. Choi, et al. 2009. Toxicological evaluation of the isoflavone puerarin and its glycosides. Eur. Food Res. Technol. 230: 145-153.   DOI   ScienceOn
6 Chung, M. J., M. J. Sung, C. S. Park, D. K. Kweon, A. Mantovani, T. W. Moon, et al. 2008. Antioxidative and hypocholesterolemic activities of water-soluble puerarin glycosides in HepG2 cells and in C57 BL/6J mice. Eur. J. Pharmacol. 578: 159-170.   DOI   ScienceOn
7 Ito, K., S. Ito, T. Shimamura, S. Weyand, Y. Kawarasaki, T. Misaka, et al. 2011. Crystal structure of glucansucrase from the dental caries pathogen Streptococcus mutans. J. Mol. Biol. 408: 177-186.   DOI   ScienceOn
8 Jiang, J. R., S. Yuan, J. F. Ding, S. C. Zhu, H. D. Xu, T. Chen, et al. 2008. Conversion of puerarin into its 7-O-glycoside derivatives by Microbacterium oxydans (CGMCC 1788) to improve its water solubility and pharmacokinetic properties. Appl. Microbiol. Biotechnol. 81: 647-657.   DOI   ScienceOn
9 Kim, Y. M., M. J. Yeon, N. S. Choi, Y. H. Chang, M. Y. Jung, J. J. Song, and J. S. Kim. 2010. Purification and characterization of a novel glucansucrase from Leuconostoc lactis EG001. Microbiol. Res. 165: 384-391.   DOI   ScienceOn
10 Kimura, A., M. Takata, O. Sakai, H. Matsui, N. Takai, T. Takayanagi, et al. 1992. Complete amino acid sequence of crystalline alpha-glucosidase from Aspergillus niger. Biosci. Biotechnol. Biochem. 56: 1368-1370.   DOI   ScienceOn
11 Li, D., S. H. Park, J. H. Shim, H. S. Lee, S. Y. Tang, C. S. Park, and K. H. Park. 2004. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789-2797.   DOI   ScienceOn
12 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.   DOI
13 Moon, Y. H., G. Kim, J. H. Lee, X. J. Jin, D. W. Kim, and D. Kim. 2006. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. J. Mol. Catal. B Enzym. 40: 1-7.   DOI   ScienceOn
14 Mori, M., T. Aizawa, M. Tokoro, T. Miki, and Y. Yamori. 2004. Soy isoflavone tablets reduce osteoporosis risk factors and obesity in middle-aged Japanese women. Clin. Exp. Pharmacol. Physicol. 31: S44-S46.   DOI   ScienceOn
15 Nguyen, V. D., B. C. Min, M. O. Kyung, J. T. Park, B. H. Lee, C. H. Choi, et al. 2009. Identification of a naturally-occurring 8-[${\alpha}$-D-glucopyranosyl-(1-6)-${\beta}$-D-glucopyranosyl] daidzein from cultivated kudzu root. Phytochem. Anal. 20: 450-455.
16 Park, T. S., H. J. Jeong, J. A. Ko, Y. B. Ryu, S. J. Park, D. Kim, et al. 2012. Biochemical characterization of thermophilic dextranase from thermophilic bacterium, Thermoanaerobacter pseudethanolicus. J. Microbiol. Biotechnol. 22: 637-641.   DOI   ScienceOn
17 Su, D. and J. F. Robyt. 1993. Control of the synthesis of dextran and acceptor-products by Leuconostoc mesenteroides B-512FM dextransucrase. Carbohydr. Res. 248: 471-476.
18 Robyt, J. F., S. H. Yoon, and R. Mukerjea. 2008. Dextransucrase and the mechanism for dextran biosynthesis. Carbohydr. Res. 343: 3039-3048.   DOI   ScienceOn
19 Seo, E. S., J. H. Lee, J. Y. Park, D. Kim, H. J. Han, and J. F. Robyt. 2005. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction. J. Biotechnol. 117: 31-38.   DOI   ScienceOn
20 Shimamura, A., Y. J. Nakano, H. Mukasa, and H. K. Kuramitsu. 1994. Identification of amino acid residues in Streptococcus mutans glucosyltransferase influencing the structure of the glucan product. J. Bacteriol. 176: 4845-4850.   DOI
21 Yu, C., H. Xu, G. Hung, T. Chen, G. Liu, N. Chai, et al. 2010. Permeabilization of Microbacterium oxylans shifts the conversion of puerarin from puerarin-7-O-glucoside to puerarin-7-O-fructoside. Appl. Microbiol. Biotechnol. 86: 863-870.   DOI   ScienceOn