• Title/Summary/Keyword: Lens Modelling

Search Result 12, Processing Time 0.041 seconds

The Study on the Manufacturing and Inspection of Aspheric Lens using Automatic Design Program (자동설계 프로그램을 이용한 비구면 렌즈의 가공 및 검증에 관한 연구)

  • Kim Soo Yong;Han Min Sik;Kim Se Min;Kim Tea Ho;Jeon Eon Chan
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.197-202
    • /
    • 2005
  • An aspheric lens is one of a key point optical element in the optical industry. The feature of an aspheric lens is not to have the spherical aberration. An aspheric lens is also essential element for high-precision and light-weight in the optical machine. Generally it have been used in a tailor progression an aspheric lens modelling much. In this study we applied a lay back-tracer using a index of refraction to draw a creative aspheric lens. Also we developed the automatic design program for aspheric lens. We manufactured the aspheric lens and executed a comparison experiment for refraction situation of shape and straightness experiment to inspect the drawn aspheric lens in this study.

  • PDF

A Study on the Design of Asperical Lens by using Ray Tracing Method (광선추적방식을 적용한 비구면 렌즈 설계에 관한 연구)

  • Kim S.Y.;Park J.W.;Seo S.H.;Lee S.S.;Jeon E.C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.2019-2023
    • /
    • 2005
  • A aspheric lens is one a key point optical element in the optical industry. The feature of a aspheric lens is not to have the spherical aberration. A aspheric lens is also essential element for high-precision and light-weight in the optical machine. Generally it have been used in a tailor progression an aspheric lens modelling much. In this study we applied a lay back-tracer using a index of refraction to draw a creative aspheric lens. And we executed a comparison experiment for refraction situation of shape and straightness experiment to inspect the drawn aspheric lens in this study

  • PDF

Vision Inspection for Flexible Lens Assembly of Camera Phone (카메라 폰 렌즈 조립을 위한 비전 검사 방법들에 대한 연구)

  • Lee I.S.;Kim J.O.;Kang H.S.;Cho Y.J.;Lee G.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.631-632
    • /
    • 2006
  • The assembly of camera lens modules fur the mobile phone has not been automated so far. They are still assembled manually because of high precision of all parts and hard-to-recognize lens by vision camera. In addition, the very short life cycle of the camera phone lens requires flexible and intelligent automation. This study proposes a fast and accurate identification system of the parts by distributing the camera for 4 degree of freedom assembly robot system. Single or multi-cameras can be installed according to the part's image capture and processing mode. It has an agile structure which enables adaptation with the minimal job change. The framework is proposed and the experimental result is shown to prove the effectiveness.

  • PDF

Sustainability of freshwater lens in small islands under climate change and increasing population

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.145-145
    • /
    • 2019
  • Groundwater and rainwater are the only sources of freshwater in small islands as many islands lack surface water sources. Groundwater occurring in the form of freshwater lens floating on denser seawater is highly dependent on natural recharge from rainfall. A sharp interface numerical model for regional and well scale modeling is selected to assess the sustainability of freshwater lens in the island of Tongatapu. In this study, 29 downscaled General Circulation Model(GCM) predictions are input to the recharge model based on water balance modelling. Three GCM predictions which represent wet, dry and medium conditions are selected for use in the groundwater flow model. Total freshwater volume and number of saltwater intruded wells are simulated under various climate scenarios with GCM predicted rainfall pattern, sea level rise and pumping. Simulations indicate that the sustainability of the freshwater lens is threatened by the frequent droughts which are predicted under all scenarios of recharge. The natural depletion of the lens during droughts and increase in water demands, leads to saltwater upconing under the pumping wells. Implementation of drought management measures is of utmost importance to ensure sustainability of freshwater lens in future.

  • PDF

Optical Design of Reflector of Automotive Headlamp (자동차 헤드램프 반사경의 광학 설계)

  • 사종엽;박정공
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.190-196
    • /
    • 2004
  • ACR(All Clear Reflector), also widely referred to as FFR(Free Form Reflector), were designed in general and intelligent ways using a NUDBS surface for the mathematical modelling of the reflector shape and artificial intelligence as the optimum design algorithm. An ACR, which consists of a continuous surface reflector and clear outer lens, offers styling advantages and provides a high quality light performance. The clear outer lens of an ACR remains efficient even with a highly inclined shape, as in the design of a sports car, as well as the complete clearness of the reflector surface eliminates the nuisance of stray light caused by the steps between adjacent segments of multi-faced reflectors. The application of an ACR to low beam lamp was so sucessful to obtain the sharp cut-off with the lens-free single-surfaced-smooth reflector. The design technique of ACR was tested with all types of lamps, including low beams, high beams, and fog lamps.

Micromachining Modelling and Simulation for Microlens Using Excimer Laser (액시머 레이저를 이용한 마이크로 렌즈 가공 모델링 및 시뮬레이션)

  • 최경현;배창현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This paper addresses the method for figuring out the hole diameter on the mask containing the information about machining depth. With this mask e micro machining is carried out with a simple 2D movement of the mask. Based on e suggested method excimer laser ablation processes are modeled and determination of the optimal laser ablation conditions such as hole diameter, step size, mask movement velocity, etc. is completed. The excimer laser ablation simulation for creating 3D micro lens is carried out by employing determined ablation conditions to prove verification of the method. The results from simulation illustrated the average error of 140nm and e relative error of 2%.

Learning the nonlinearity of a camera calibration model using GMDH algorithm (GMDH 알고리즘에 의한 카메라 보정 모델의 비선형성 학습)

  • Kim, Myoung-Hwan;Do, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.109-115
    • /
    • 2005
  • Calibration is a prerequisite procedure for employing a camera as a 3D sensor in an automated machines like robots. As accurate sensing is possible only when the vision sensor is calibrated accurately, many different approaches and models have been proposed for increasing calibration accuracy. Particularly an important factor which greatly affects the calibration accuracy is the nonlinearity in the mapping between 3D world and corresponding 2D image. In this paper GMDH algorithm is used to learn the nonlinearity without physical modelling. The technique proposed can be effective in various situations where the levels of noises and characteristics of nonlinear distortion are different. In simulations and an experiment, the proposed technique showed good and reliable results.

3D Feature Based Tracking using SVM

  • Kim, Se-Hoon;Choi, Seung-Joon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1458-1463
    • /
    • 2004
  • Tracking is one of the most important pre-required task for many application such as human-computer interaction through gesture and face recognition, motion analysis, visual servoing, augment reality, industrial assembly and robot obstacle avoidance. Recently, 3D information of object is required in realtime for many aforementioned applications. 3D tracking is difficult problem to solve because during the image formation process of the camera, explicit 3D information about objects in the scene is lost. Recently, many vision system use stereo camera especially for 3D tracking. The 3D feature based tracking(3DFBT) which is on of the 3D tracking system using stereo vision have many advantage compare to other tracking methods. If we assumed the correspondence problem which is one of the subproblem of 3DFBT is solved, the accuracy of tracking depends on the accuracy of camera calibration. However, The existing calibration method based on accurate camera model so that modelling error and weakness to lens distortion are embedded. Therefore, this thesis proposes 3D feature based tracking method using SVM which is used to solve reconstruction problem.

  • PDF

Impact of predicted climate change on groundwater resources of small islands : Case study of a small Pacific Island

  • Babu, Roshina;Park, Namsik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.145-145
    • /
    • 2018
  • Small islands rely heavily on groundwater resources in addition to rainwater as the source of freshwater since surface water bodies are often absent. The groundwater resources are vulnerable to sea level rise, coastal flooding, saltwater intrusion, irregular pattern of precipitation resulting in long droughts and flash floods. Increase in population increases the demand for the limited groundwater resources, thus aggravating the problem. In this study, the effects of climate change on Tongatapu Island, Kingdom of Tonga, a small island in Pacific Ocean, are investigated using a sharp interface transient groundwater flow model. Twenty nine downscaled General Circulation Model(GCM) predictions are input to a water balance model to estimate the groundwater recharge. The temporal variation in recharge is predicted over the period of 2010 to 2099. A set of GCM models are selected to represent the ensemble of 29 models based on cumulative recharge at the end of the century. This set of GCM model predictions are then used to simulate a total of six climate scenarios, three each (2010-2039, 2040-2069, and 2070-2099) under RCP 4.5 and RCP 8.5. The impacts of predicted climate change on groundwater resources is evaluated in terms of freshwater volume changes and saltwater ratios in pumping wells compared to present conditions. Though the cumulative recharge at the end of the century indicates a wetter climate compared to the present conditions the large variability in rainfall pattern results in frequent periods of groundwater drought leading to saltwater intrusion in pumping wells. Thus for sustaining the limited groundwater resources in small islands, implementation of timely assessment and management practices are of utmost importance.

  • PDF

Bundle Block Adjustment of Omni-directional Images by a Mobile Mapping System (모바일매핑시스템으로 취득된 전방위 영상의 광속조정법)

  • Oh, Tae-Wan;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.593-603
    • /
    • 2010
  • Most spatial data acquisition systems employing a set of frame cameras may have suffered from their small fields of view and poor base-distance ratio. These limitations can be significantly reduced by employing an omni-directional camera that is capable of acquiring images in every direction. Bundle Block Adjustment (BBA) is one of the existing georeferencing methods to determine the exterior orientation parameters of two or more images. In this study, by extending the concept of the traditional BBA method, we attempt to develop a mathematical model of BBA for omni-directional images. The proposed mathematical model includes three main parts; observation equations based on the collinearity equations newly derived for omni-directional images, stochastic constraints imposed from GPS/INS data and GCPs. We also report the experimental results from the application of our proposed BBA to the real data obtained mainly in urban areas. With the different combinations of the constraints, we applied four different types of mathematical models. With the type where only GCPs are used as the constraints, the proposed BBA can provide the most accurate results, ${\pm}5cm$ of RMSE in the estimated ground point coordinates. In future, we plan to perform more sophisticated lens calibration for the omni-directional camera to improve the georeferencing accuracy of omni-directional images. These georeferenced omni-directional images can be effectively utilized for city modelling, particularly autonomous texture mapping for realistic street view.