• 제목/요약/키워드: Least-Squares solution

검색결과 207건 처리시간 0.022초

EFFICIENT ESTIMATION OF THE REGULARIZATION PARAMETERS VIA L-CURVE METHOD FOR TOTAL LEAST SQUARES PROBLEMS

  • Lee, Geunseop
    • 대한수학회지
    • /
    • 제54권5호
    • /
    • pp.1557-1571
    • /
    • 2017
  • The L-curve method is a parametric plot of interrelation between the residual norm of the least squares problem and the solution norm. However, the L-curve method may be hard to apply to the total least squares problem due to its no closed form solution of the regularized total least squares problems. Thus the sequence of the solution norm under the fixed regularization parameter and its corresponding residual need to be found with an efficient manner. In this paper, we suggest an efficient algorithm to find the sequence of the solutions and its residual in order to plot the L-curve for the total least squares problems. In the numerical experiments, we present that the proposed algorithm successfully and efficiently plots fairly 'L' like shape for some practical regularized total least squares problems.

AN ITERATIVE ALGORITHM FOR SOLVING THE LEAST-SQUARES PROBLEM OF MATRIX EQUATION AXB+CYD=E

  • Shen, Kai-Juan;You, Chuan-Hua;Du, Yu-Xia
    • Journal of applied mathematics & informatics
    • /
    • 제26권5_6호
    • /
    • pp.1233-1245
    • /
    • 2008
  • In this paper, an iterative method is proposed to solve the least-squares problem of matrix equation AXB+CYD=E over unknown matrix pair [X, Y]. By this iterative method, for any initial matrix pair [$X_1,\;Y_1$], a solution pair or the least-norm least-squares solution pair of which can be obtained within finite iterative steps in the absence of roundoff errors. In addition, we also consider the optimal approximation problem for the given matrix pair [$X_0,\;Y_0$] in Frobenius norm. Given numerical examples show that the algorithm is efficient.

  • PDF

DUAL REGULARIZED TOTAL LEAST SQUARES SOLUTION FROM TWO-PARAMETER TRUST-REGION ALGORITHM

  • Lee, Geunseop
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.613-626
    • /
    • 2017
  • For the overdetermined linear system, when both the data matrix and the observed data are contaminated by noise, Total Least Squares method is an appropriate approach. Since an ill-conditioned data matrix with noise causes a large perturbation in the solution, some kind of regularization technique is required to filter out such noise. In this paper, we consider a Dual regularized Total Least Squares problem. Unlike the Tikhonov regularization which constrains the size of the solution, a Dual regularized Total Least Squares problem considers two constraints; one constrains the size of the error in the data matrix, the other constrains the size of the error in the observed data. Our method derives two nonlinear equations to construct the iterative method. However, since the Jacobian matrix of two nonlinear equations is not guaranteed to be nonsingular, we adopt a trust-region based iteration method to obtain the solution.

PRECONDITIONED KACZMARZ-EXTENDED ALGORITHM WITH RELAXATION PARAMETERS

  • Popa, Constantin
    • Journal of applied mathematics & informatics
    • /
    • 제6권3호
    • /
    • pp.757-770
    • /
    • 1999
  • We analyse in this paper the possibility of using preconditioning techniques as for square non-singular systems, also in the case of inconsistent least-squares problems. We find conditions in which the minimal norm solution of the preconditioned least-wquares problem equals that of the original prblem. We also find conditions such that thd Kaczmarz-Extendid algorithm with relaxation parameters (analysed by the author in [4]), cna be adapted to the preconditioned least-squares problem. In the last section of the paper we present numerical experiments, with two variants of preconditioning, applied to an inconsistent linear least-squares model probelm.

THE EXTREMAL RANKS AND INERTIAS OF THE LEAST SQUARES SOLUTIONS TO MATRIX EQUATION AX = B SUBJECT TO HERMITIAN CONSTRAINT

  • Dai, Lifang;Liang, Maolin
    • Journal of applied mathematics & informatics
    • /
    • 제31권3_4호
    • /
    • pp.545-558
    • /
    • 2013
  • In this paper, the formulas for calculating the extremal ranks and inertias of the Hermitian least squares solutions to matrix equation AX = B are established. In particular, the necessary and sufficient conditions for the existences of the positive and nonnegative definite solutions to this matrix equation are given. Meanwhile, the least squares problem of the above matrix equation with Hermitian R-symmetric and R-skew symmetric constraints are also investigated.

ITERATIVE ALGORITHMS FOR THE LEAST-SQUARES SYMMETRIC SOLUTION OF AXB = C WITH A SUBMATRIX CONSTRAINT

  • Wang, Minghui;Feng, Yan
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.1-12
    • /
    • 2009
  • Iterative algorithms are proposed for the least-squares symmetric solution of AXB = E with a submatrix constraint. We characterize the linear mappings from their independent element space to the constrained solution sets, study their properties and use these properties to propose two matrix iterative algorithms that can find the minimum and quasi-minimum norm solution based on the classical LSQR algorithm for solving the unconstrained LS problem. Numerical results are provided that show the efficiency of the proposed methods.

  • PDF

AN ITERATIVE ALGORITHM FOR THE LEAST SQUARES SOLUTIONS OF MATRIX EQUATIONS OVER SYMMETRIC ARROWHEAD MATRICES

  • Ali Beik, Fatemeh Panjeh;Salkuyeh, Davod Khojasteh
    • 대한수학회지
    • /
    • 제52권2호
    • /
    • pp.349-372
    • /
    • 2015
  • This paper concerns with exploiting an oblique projection technique to solve a general class of large and sparse least squares problem over symmetric arrowhead matrices. As a matter of fact, we develop the conjugate gradient least squares (CGLS) algorithm to obtain the minimum norm symmetric arrowhead least squares solution of the general coupled matrix equations. Furthermore, an approach is offered for computing the optimal approximate symmetric arrowhead solution of the mentioned least squares problem corresponding to a given arbitrary matrix group. In addition, the minimization property of the proposed algorithm is established by utilizing the feature of approximate solutions derived by the projection method. Finally, some numerical experiments are examined which reveal the applicability and feasibility of the handled algorithm.

BLOCK DIAGONAL PRECONDITIONERS FOR THE GALERKIN LEAST SQUARES METHOD IN LINEAR ELASTICITY

  • Yoo, Jae-Chil
    • 대한수학회논문집
    • /
    • 제15권1호
    • /
    • pp.143-153
    • /
    • 2000
  • In [8], Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated linear systems. In this work, we propose the block diagonal preconditioners. The preconditioned conjugate residual method is robust in that the convergence is uniform as the parameter, v, goes to $\sfrac{1}{2}$. Computational experiments are included.

  • PDF

ON THE PURE IMAGINARY QUATERNIONIC LEAST SQUARES SOLUTIONS OF MATRIX EQUATION

  • WANG, MINGHUI;ZHANG, JUNTAO
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.95-106
    • /
    • 2016
  • In this paper, according to the classical LSQR algorithm forsolving least squares (LS) problem, an iterative method is proposed for finding the minimum-norm pure imaginary solution of the quaternionic least squares (QLS) problem. By means of real representation of quaternion matrix, the QLS's correspongding vector algorithm is rewrited back to the matrix-form algorthm without Kronecker product and long vectors. Finally, numerical examples are reported that show the favorable numerical properties of the method.

LEAST-SQUARES SPECTRAL COLLOCATION PARALLEL METHODS FOR PARABOLIC PROBLEMS

  • SEO, JEONG-KWEON;SHIN, BYEONG-CHUN
    • 호남수학학술지
    • /
    • 제37권3호
    • /
    • pp.299-315
    • /
    • 2015
  • In this paper, we study the first-order system least-squares (FOSLS) spectral method for parabolic partial differential equations. There were lots of least-squares approaches to solve elliptic partial differential equations using finite element approximation. Also, some approaches using spectral methods have been studied in recent. In order to solve the parabolic partial differential equations in parallel, we consider a parallel numerical method based on a hybrid method of the frequency-domain method and first-order system least-squares method. First, we transform the parabolic problem in the space-time domain to the elliptic problems in the space-frequency domain. Second, we solve each elliptic problem in parallel for some frequencies using the first-order system least-squares method. And then we take the discrete inverse Fourier transforms in order to obtain the approximate solution in the space-time domain. We will introduce such a hybrid method and then present a numerical experiment.