• Title/Summary/Keyword: Least mean-square(LMS) algorithm

Search Result 250, Processing Time 0.033 seconds

Implementation of adaptive filters using fast hadamard transform (고속하다마드 변환을 이용한 적응 필터의 구현)

  • 곽대연;박진배;윤태성
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1379-1382
    • /
    • 1997
  • We introduce a fast implementation of the adaptive transversal filter which uses least-mean-square(LMS) algorithm. The fast Hadamard transform(FHT) is used for the implementation of the filter. By using the proposed filter we can get the significant time reduction in computatioin over the conventional time domain LMS filter at the cost of a little performance. By computer simulation, we show the comparison of the propsed Hadamard-domain filter and the time domain filter in the view of multiplication time, mean-square error and robustness for noise.

  • PDF

A New Least Mean Square Algorithm Using a Running Average Process for Speech Enhancement

  • Lee, Soo-Jeong;Ahn, Chan-Sik;Yun, Jong-Mu;Kim, Soon-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.3E
    • /
    • pp.123-130
    • /
    • 2006
  • The adaptive echo canceller (AEC) has become an important component in speech communication systems, including mobile station. In these applications, the acoustic echo path has a long impulse response. We propose a running-average least mean square (RALMS) algorithm with a detection method for acoustic echo cancellation. Using colored input models, the result clearly shows that the RALMS detection algorithm has a convergence performance superior to the least mean square (LMS) detection algorithm alone. The computational complexity of the new RALMS algorithm is only slightly greater than that of the standard LMS detection algorithm but confers a major improvement in stability.

An algebraic step size least mean fourth algorithm for acoustic communication channel estimation (음향 통신 채널 추정기를 이용한 대수학적 스텝크기 least mean fourth 알고리즘)

  • Lim, Jun-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • The least-mean fourth (LMF) algorithm is well known for its fast convergence and low steady-state error especially in non-Gaussian noise environments. Recently, there has been increasing interest in the least mean square (LMS) algorithms with variable step size. It is because the variable step-size LMS algorithms have shown to outperform the conventional fixed step-size LMS in the various situations. In this paper, a variable step-size LMF algorithm is proposed, which adopts an algebraic optimal step size as a variable step size. It is expected that the proposed algorithm also outperforms the conventional fixed step-size LMF. The superiority of the proposed algorithm is confirmed by the simulations in the time invariant and time variant channels.

Experimental Study on Bi-directional Filtered-x Least Mean Square Algorithm (양방향 Filtered-x 최소 평균 제곱 알고리듬에 대한 실험적인 연구)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.197-205
    • /
    • 2014
  • In applications of adaptive noise control or active noise control, the presence of a transfer function in the secondary path following the adaptive controller and the error path, been shown to generally degrade the performance of the Least Mean Square (LMS) algorithm. Thus, the convergence rate is lowered, the residual power is increased, and the algorithm can become unstable. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used. But these algorithms have slow convergence speed and weakness in the environment that the secondary path and error path are varied. Therefore, I present the new algorithm called the "Bi-directional Filtered-x (BFX) LMS" algorithm with nearly equal computation complexity. Through experimental study, the proposed BFX-LMS algorithm has better convergence speed and better performance than the conventional FX-LMS algorithm, especially when the secondary path or error path is varied and the impulsive disturbance is flow in.

Analysis of Bi-directional Filtered-x Least Mean Square Algorithm (양방향 Filtered-x 최소 평균 제곱 알고리듬에 대한 해석)

  • Kwon, Oh Sang
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.4
    • /
    • pp.133-142
    • /
    • 2014
  • The least mean square(LMS) algorithm has been popular owing to its simplicity, stability, and availability to implement. But it inherently has a problem of slow convergence speed, and the presence of a transfer function in the secondary path following the adaptive controller and the error path has been shown to generally degrade the stability and the performance of the LMS algorithm in applications of acoustical noise control. In general, in order to solve these problems, the filtered-x LMS (FX-LMS) type algorithms can be used and the bi-directional Filtered-x LMS(BFXLMS) algorithm is very attractive among them, which increase the convergence speed and the performance of the controller with nearly equivalent computation complexity. In this paper, a mathematical analysis for the BFXLMS algorithm is presented. In terms of view points of time domain, frequency domain, and stochastic domain, the characteristics and stabilities of algorithm is accurately analyzed.

Variable Step LMS Algorithm using Fibonacci Sequence (피보나치 수열을 활용한 가변스텝 LMS 알고리즘)

  • Woo, Hong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.19 no.2
    • /
    • pp.42-46
    • /
    • 2018
  • Adaptive signal processing is quite important in various signal and communication environments. In adaptive signal processing methods since the least mean square(LMS) algorithm is simple and robust, it is used everywhere. As the step is varied in the variable step(VS) LMS algorithm, the fast convergence speed and the small excess mean square error can be obtained. Various variable step LMS algorithms are researched for better performances. But in some of variable step LMS algorithms the computational complexity is quite large for better performances. The fixed step LMS algorithm with a low computational complexity merit and the variable step LMS algorithm with a fast convergence merit are combined in the proposed sporadic step algorithm. As the step is sporadically updated, the performances of the variable step LMS algorithm can be maintained in the low update rate using Fibonacci sequence. The performances of the proposed variable step LMS algorithm are proved in the adaptive equalizer.

Deterministic Function Variable Step Size LMS Algorithm (결정함수 가변스텝 LMS 알고리즘)

  • Woo, Hong-Chae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.2
    • /
    • pp.128-132
    • /
    • 2011
  • Least mean square adaptive algorithms have played important role in radar, sonar, speech processing, and mobile communication. In mobile communication area, the convergence rate of a LMS algorithm is quite important. However, LMS algorithms have slow and non-uniform convergence rate problem For overcoming these shortcomings, various variable step LMS adaptive algorithms have been studied in recent years. Most of these recent LMS algorithms have used complex variable step methods to get a rapid convergence. But complex variable step methods need a high computational complexity. Therefore, the main merits such as the simplicity and the robustness in a LMS algorithm can be eroded. The proposed deterministic variable step LMS algorithm is based upon a simple deterministic function for the step update so that the simplicity of the proposed algorithm is obtained and the fast convergence is still maintainable.

Active Noise Control Using Wavelet Transform Domain Least Mean Square (웨이블릿 변환역 최소평균자승법을 이용한 능동 소음 제어)

  • Kim, Doh-Hyoung;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.269-273
    • /
    • 2000
  • This paper describes Active Noise Control (ANC) using Discrete Wavelet Transform (DWT) Domain Least Mean Square (LMS) Method. DWT-LMS is one of the transform domain input decorrelation LMS and improves the convergence speed of adaptive filter especially when the input signal is highly correlated. Conventional transform domain LMS's use Discrete Cosine Transform (DCT) because it offers linear band signal decomposition and fast transform algorithm. Wavelet transform can project the input signal into the several octave band subspace and offers more efficient sliding fast transform algorithm. In this paper, we propose Wavelet transform domain LMS algorithm and shows its performance is similar to DCT LMS in some cases using ANC simulation.

  • PDF

A Study on Modified IGC Algorithm for Realtime Noise Reduction (실시간 소음 제거에 적합한 변형 IGC 알고리즘에 관한 연구)

  • Lee, Chae-Wook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.14 no.2
    • /
    • pp.95-98
    • /
    • 2013
  • The LMS(Least Mean Square) algorithm, one of the most famous, is generally used because of tenacity and high mating spots and simplicity of realization, But it has trade-off between nonuniform collection and EMSE(Excess mean square error). To overcome this weakness, a variable step size is used widely, but it needs a lot of calculation loads. In this paper, we suggest changed algorithm in case of environment changes of cars and reduce amount of calculation as it uses original signal and noise signal of IGC(Instantaneous Gain Control) algorithm. In this paper, logarithmic function is removed because of real-time processing IGC. The performance of proposed algorithm is tested to adaptive noise canceller in automobile.

Interference Cancellation Based on Adaptive Signal Processing for MIMO RF Repeaters (MIMO RF 중계기를 위한 적응 신호처리 기반의 간섭 제거)

  • Lee, Kyu-Bum;Choi, Ji-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9C
    • /
    • pp.735-742
    • /
    • 2010
  • In this paper, we propose adaptive algorithms for interference cancellation in RF repeaters with multiple transmit and receive antennas. When multiple antennas are used in a repeater, the imperfect isolation between transmit and receive antennas causes the feedback interference which is modeled as multi-input multi-output (MIMO) channel. To remove the feedback interference, we derive the least mean square (LMS) algorithm and the recursive least squares (RLS) algorithm for interference cancellation based on adaptive signal processing techniques. Through computer simulations for the proposed algorithms, we analyze the convergence characteristics and compare the steady-state performance for interference cancellation.