• Title/Summary/Keyword: Least Square(LS)

Search Result 94, Processing Time 0.028 seconds

A Curve-Fitting Channel Estimation Method for OFDM System in a Time-Varying Frequency-Selective Channel (시변 주파수 선택적 채널에서 OFDM시스템을 위한 Curve-Fitting 채널추정 방법)

  • Oh Seong-Keun;Nam Ki-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.49-58
    • /
    • 2006
  • In this paper, a curve-fitting channel estimation method is proposed for orthogonal frequency division multiplexing (OFDM) system in a time-varying frequency-selective fading channel. The method can greatly improve channel state information (CSI) estimation accuracy by performing smoothing and interpolation through consecutive curve-fitting processes in both time domain and frequency domain. It first evaluates least-squares (LS) estimates using pilot symbols and then the estimates are approximated to a polynomial with proper degree in the LS error sense, starting from one preferred domain in which pilots we densely distributed. Smoothing, interpolation, and prediction are performed subsequently to obtain CSI estimates for data transmission. The channel estimation processes are completed by smoothing and interpolating CSI estimates in the other domain once again using the channel estimates obtained in one domain. The performance of proposed method is influenced heavily on the time variation and frequency selectivity of channel and pilot arrangement. Hence, a proper degree of polynomial and an optimum approximation interval according to various system and channel conditions are required for curve-fitting. From extensive simulation results in various channel environments, we see that the proposed method performs better than the conventional methods including the optimal Wiener filtering method, in terms of the mean square error (MSE) and bit error rate (BER).

Least Square Prediction Error Expansion Based Reversible Watermarking for DNA Sequence (최소자승 예측오차 확장 기반 가역성 DNA 워터마킹)

  • Lee, Suk-Hwan;Kwon, Seong-Geun;Kwon, Ki-Ryong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.66-78
    • /
    • 2015
  • With the development of bio computing technology, DNA watermarking to do as a medium of DNA information has been researched in the latest time. However, DNA information is very important in biologic function unlikely multimedia data. Therefore, the reversible DNA watermarking is required for the host DNA information to be perfectively recovered. This paper presents a reversible DNA watermarking using least square based prediction error expansion for noncodng DNA sequence. Our method has three features. The first thing is to encode the character string (A,T,C,G) of nucleotide bases in noncoding region to integer code values by grouping n nucleotide bases. The second thing is to expand the prediction error based on least square (LS) as much as the expandable bits. The last thing is to prevent the false start codon using the comparison searching of adjacent watermarked code values. Experimental results verified that our method has more high embedding capacity than conventional methods and mean prediction method and also makes the prevention of false start codon and the preservation of amino acids.

지자기 전달함수의 로버스트 추정

  • Yang, Jun-Mo;O, Seok-Hun;Lee, Deok-Gi;Yun, Yong-Hun
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.131-142
    • /
    • 2002
  • Geomagnetic transfer function is generally estimated by choosing transfer to minimize the square sum of differences between observed values. If the error structure sccords to the Gaussian distribution, standard least square(LS) can be the estimation. However, for non-Gaussian error distribution, the LS estimation can be severely biased and distorted. In this paper, the Gaussian error assumption was tested by Q-Q(Quantile-Quantile) plot which provided information of real error structure. Therefore, robust estimation such as regression M-estimate that does not allow a few bad points to dominate the estimate was applied for error structure with non-Gaussian distribution. The results indicate that the performance of robust estimation is similar to the one of LS estimation for Gaussian error distribution, whereas the robust estimation yields more reliable and smooth transfer function estimates than standard LS for non-Gaussian error distribution.

  • PDF

Sustained Vowel Modeling using Nonlinear Autoregressive Method based on Least Squares-Support Vector Regression (최소 제곱 서포트 벡터 회귀 기반 비선형 자귀회귀 방법을 이용한 지속 모음 모델링)

  • Jang, Seung-Jin;Kim, Hyo-Min;Park, Young-Choel;Choi, Hong-Shik;Yoon, Young-Ro
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.957-963
    • /
    • 2007
  • In this paper, Nonlinear Autoregressive (NAR) method based on Least Square-Support Vector Regression (LS-SVR) is introduced and tested for nonlinear sustained vowel modeling. In the database of total 43 sustained vowel of Benign Vocal Fold Lesions having aperiodic waveform, this nonlinear synthesizer near perfectly reproduced chaotic sustained vowels, and also conserved the naturalness of sound such as jitter, compared to Linear Predictive Coding does not keep these naturalness. However, the results of some phonation are quite different from the original sounds. These results are assumed that single-band model can not afford to control and decompose the high frequency components. Therefore multi-band model with wavelet filterbank is adopted for substituting single band model. As a results, multi-band model results in improved stability. Finally, nonlinear sustained vowel modeling using NAR based on LS-SVR can successfully reconstruct synthesized sounds nearly similar to original voiced sounds.

Comparison of Bootstrap Methods for LAD Estimator in AR(1) Model

  • Kang, Kee-Hoon;Shin, Key-Il
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.745-754
    • /
    • 2006
  • It has been shown that LAD estimates are more efficient than LS estimates when the error distribution is double exponential in AR(1) model. In order to explore the performance of LAD estimates one can use bootstrap approaches. In this paper we consider the efficiencies of bootstrap methods when we apply LAD estimates with highly variable data. Monte Carlo simulation results are given for comparing generalized bootstrap, stationary bootstrap and threshold bootstrap methods.

Performance Improvement of Channel Estimation based on Time-domain Threshold for OFDM Systems (시간영역 문턱값을 이용한 OFDM 시스템의 채널 추정 성능 향상)

  • Lee, You-Seok;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.720-724
    • /
    • 2008
  • Channel estimation in OFDM systems is usually carried out in frequency domain based on the least-squares (LS) method and the minimum mean-square error (MMSE) method with known pilot symbols. The LS estimator has a merit of low complexity but may suffer from the noise because it does not consider any noise effect in obtaining its solution. To enhance the noise immunity of the LS estimator, we consider estimation noise in time domain. Residual noise existing at the estimated channel coefficients in time domain could be reduced by reasonable selection of a threshold value. To achieve this, we propose a channel-estimation method based on a time-domain threshold which is a standard deviation of noise obtained by wavelet decomposition. Computer simulation shows that the estimation performance of the proposed method approaches to that of the known-channel case in terms of bit-error rates after the Viterbi decoder in overall SNRs.

Determination of Probable Rainfall Intensity Formulas for Designing Storm Sewer Systems at Incheon District (우수거 설계를 위한 인천지방에서의 확률강우강도식의 산정)

  • Ahn, Tae-Jin;Kim, Kyung-Sub
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.3
    • /
    • pp.99-106
    • /
    • 1998
  • This paper presents a procedure for determining the design rainfall depth and the design rainfall intensity at Incheon city area in Korea. In this study the eight probability distributions are considered to estimate the probable rainfall depths for 11 different durations. The Kolmogorov - Smirnov test and the Chi-square test are adopted to test each distribution. The probable rainfall intensity formulas are then determined by i) the least squares (LS) method, ii) the least median squares (LMS) method, iii) the reweighted least squares method based on the LMS (RLS), and iv) the constrained regression (CR) model. The Talbot, the Sherman, the Japanese, and the Unified type are considered to determine the best type for the Incheon station. The root mean squared (RMS) errors are computed to test the formulas derived by four methods. It is found that the Unified type is the most reliable and that all methods presented herein are acceptable for determining the coefficients of rainfall intensity formulas from an engineering point of view.

  • PDF

Auto-Measurement of Induction Motor Parameters

  • Kim Kyung-Seo;Byun Sung-Hoon
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.226-232
    • /
    • 2006
  • This paper presents the parameter measurement methods for high performance drive of induction motors, which are suitable for the self-commissioning function of commercial inverters. In this study, some factors that affect the accuracy of parameter measurement are examined. Measuring methods and conditions that are best fit to each parameter measurement procedure are then proposed. All the measurement procedures can be done without any auxiliary equipment, so that those can be easily adopted as self-commissioning functions of commercial inverters. To improve the measuring accuracy, least square approximation methods are adopted during the measurement procedure. The validity of the proposed methods are confirmed through experiments.

Hyperstable Adaptive Recursive Filter with an Adaptive Compensator (適應 補償器를 채용한 超安定性 適應 循環 필터)

  • Yoon, Byung-Woo;Shin, Yoon-Ki
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.3
    • /
    • pp.145-155
    • /
    • 1990
  • In this paper, an adaptive Infinite Impulse Response (IIR) filter algorithm using output error method, which prevents poles of a system transfer function from being out of unit circle, is proposed, and it is proved that the proposed algorithm always satisfies hyperstability. The proposed algorithm is applied to an Adaptive Noise Canceller (ANC), and compared with a Least Square (LS) method adaptive IIR filter algorithm and an adaptive Finite Inpulse Response (FIR) filter algorithm. As a result, the validity of the proposed algorithm is proved.

  • PDF

Nonlinearity compensation for laser interferometer using adaptive algorithm (적응형 알고리즘에 의한 레이저 간섭계의 비선형성 오차 보정)

  • Lee, Woo-Ram;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.234-236
    • /
    • 2006
  • Because of its long measurement range and ultra-precise resolution. the heterodyne laser interferometer systems are very common in various industry area such as semiconductor manufacturing. However the periodical nonlinearity property caused from frequency mixing is an obstacle to improve the high measurement accuracy in nanometer scale. In this paper to minimize the effect of nonlinearity, we propose an adaptive nonlinearity compensation algorithm. We first compute compensation parameters using least square (LS) with the capacitance displacement sensor as a reference input. We then update the parameters with recursive LS (RLS) while the values are optimized to modify the elliptical phase into circular one. Through comparison with some experimental results of laser system, we demonstrate the effectiveness of our proposed algorithm.

  • PDF