• Title/Summary/Keyword: Learning cycle

Search Result 313, Processing Time 0.031 seconds

User Interface Application for Cancer Classification using Histopathology Images

  • Naeem, Tayyaba;Qamar, Shamweel;Park, Peom
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.17 no.2
    • /
    • pp.91-97
    • /
    • 2021
  • User interface for cancer classification system is a software application with clinician's friendly tools and functions to diagnose cancer from pathology images. Pathology evolved from manual diagnosis to computer-aided diagnosis with the help of Artificial Intelligence tools and algorithms. In this paper, we explained each block of the project life cycle for the implementation of automated breast cancer classification software using AI and machine learning algorithms to classify normal and invasive breast histology images. The system was designed to help the pathologists in an automatic and efficient diagnosis of breast cancer. To design the classification model, Hematoxylin and Eosin (H&E) stained breast histology images were obtained from the ICIAR Breast Cancer challenge. These images are stain normalized to minimize the error that can occur during model training due to pathological stains. The normalized dataset was fed into the ResNet-34 for the classification of normal and invasive breast cancer images. ResNet-34 gave 94% accuracy, 93% F Score, 95% of model Recall, and 91% precision.

Optimal learning in English through dynamic cooperation between theory and practice (이론과 실제의 상호작용을 통한 효율적인 영어학습)

  • Im, Byung-Bin
    • English Language & Literature Teaching
    • /
    • no.1
    • /
    • pp.1-20
    • /
    • 1995
  • Nowadays in Korea the subject of English education has been rising as one of the essential matters which need to be emphasized, reorganized, and thus refined. From the history of about one century to the current, English education may be compared to an adolescent who should be paid much more attention to grow as an independent adult. Although we recognize that there was much improvement in the past age of English education, a lot of assignments to solve await us. This study aims to suggest a recipe for optimal learning in English classes by linking theory with practice: First, the nation-wide academic associations of English teaching should act more energetically and cooperatively than ever. They need further specialization, dynamic participation, and systematic organization. At the same time the academic journals of their own should be publicized broadly, internationally as well as nationally. Second, there should be close contact and discussion between professors and secondary-school teachers. To achieve better learning in English classes, an effective cycle of equilibrium ought to be maintained by combining theory with practice. For example, language institute in universities/colleges can serve instructional programs such as lectures, colloquiums, and intensive courses for conversation. Third, native speakers of English should be positively utilized. Teachers had better keep close contact with native speakers as frequently as possible if they want to become fluent or at least acceptable speakers in English. Teachers may also use native speakers as aides in their classes.

  • PDF

Multilayer Perceptron Model to Estimate Solar Radiation with a Solar Module

  • Kim, Joonyong;Rhee, Joongyong;Yang, Seunghwan;Lee, Chungu;Cho, Seongin;Kim, Youngjoo
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.352-361
    • /
    • 2018
  • Purpose: The objective of this study was to develop a multilayer perceptron (MLP) model to estimate solar radiation using a solar module. Methods: Data for the short-circuit current of a solar module and other environmental parameters were collected for a year. For MLP learning, 14,400 combinations of input variables, learning rates, activation functions, numbers of layers, and numbers of neurons were trained. The best MLP model employed the batch backpropagation algorithm with all input variables and two hidden layers. Results: The root-mean-squared error (RMSE) of each learning cycle and its average over three repetitions were calculated. The average RMSE of the best artificial neural network model was $48.13W{\cdot}m^{-2}$. This result was better than that obtained for the regression model, for which the RMSE was $66.67W{\cdot}m^{-2}$. Conclusions: It is possible to utilize a solar module as a power source and a sensor to measure solar radiation for an agricultural sensor node.

Investigation of neural network-based cathode potential monitoring to support nuclear safeguards of electrorefining in pyroprocessing

  • Jung, Young-Eun;Ahn, Seong-Kyu;Yim, Man-Sung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.644-652
    • /
    • 2022
  • During the pyroprocessing operation, various signals can be collected by process monitoring (PM). These signals are utilized to diagnose process states. In this study, feasibility of using PM for nuclear safeguards of electrorefining operation was examined based on the use of machine learning for detecting off-normal operations. The off-normal operation, in this study, is defined as co-deposition of key elements through reduction on cathode. The monitored process signal selected for PM was cathode potential. The necessary data were produced through electrodeposition experiments in a laboratory molten salt system. Model-based cathodic surface area data were also generated and used to support model development. Computer models for classification were developed using a series of recurrent neural network architectures. The concept of transfer learning was also employed by combining pre-training and fine-tuning to minimize data requirement for training. The resulting models were found to classify the normal and the off-normal operation states with a 95% accuracy. With the availability of more process data, the approach is expected to have higher reliability.

Recent Research Trends and Prospects of HR Analytics in Korea (HR 애널리틱스의 최근 연구 동향 및 향후 과제)

  • Jo, Hui-Jin;Ahn, Ji-Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.442-452
    • /
    • 2022
  • This study was conducted to understand research trends of HR Analytics (HRA) in Korea and to suggest future research directions. First, a comparative analysis was conducted by classifying six areas of recruitment on-board, work environment, performance evaluation, retention, and exit/retirement building on the employee life cycle framework. The results indicate that first, the distribution of detailed research topics in Korean HRA research has similar to that of international research. Second, Korean HRA studies related to employee training and development function are insufficient. Third, the scope and the method of machine learning are becoming enriched. Finally Korean HRA studies are still in the technical domain and toward entering the predictive analysis domain.

Structural live load surveys by deep learning

  • Li, Yang;Chen, Jun
    • Smart Structures and Systems
    • /
    • v.30 no.2
    • /
    • pp.145-157
    • /
    • 2022
  • The design of safe and economical structures depends on the reliable live load from load survey. Live load surveys are traditionally conducted by randomly selecting rooms and weighing each item on-site, a method that has problems of low efficiency, high cost, and long cycle time. This paper proposes a deep learning-based method combined with Internet big data to perform live load surveys. The proposed survey method utilizes multi-source heterogeneous data, such as images, voice, and product identification, to obtain the live load without weighing each item through object detection, web crawler, and speech recognition. The indoor objects and face detection models are first developed based on fine-tuning the YOLOv3 algorithm to detect target objects and obtain the number of people in a room, respectively. Each detection model is evaluated using the independent testing set. Then web crawler frameworks with keyword and image retrieval are established to extract the weight information of detected objects from Internet big data. The live load in a room is derived by combining the weight and number of items and people. To verify the feasibility of the proposed survey method, a live load survey is carried out for a meeting room. The results show that, compared with the traditional method of sampling and weighing, the proposed method could perform efficient and convenient live load surveys and represents a new load research paradigm.

Application of machine learning for merging multiple satellite precipitation products

  • Van, Giang Nguyen;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.134-134
    • /
    • 2021
  • Precipitation is a crucial component of water cycle and play a key role in hydrological processes. Traditionally, gauge-based precipitation is the main method to achieve high accuracy of rainfall estimation, but its distribution is sparsely in mountainous areas. Recently, satellite-based precipitation products (SPPs) provide grid-based precipitation with spatio-temporal variability, but SPPs contain a lot of uncertainty in estimated precipitation, and the spatial resolution quite coarse. To overcome these limitations, this study aims to generate new grid-based daily precipitation using Automatic weather system (AWS) in Korea and multiple SPPs(i.e. CHIRPSv2, CMORPH, GSMaP, TRMMv7) during the period of 2003-2017. And this study used a machine learning based Random Forest (RF) model for generating new merging precipitation. In addition, several statistical linear merging methods are used to compare with the results of the RF model. In order to investigate the efficiency of RF, observed data from 64 observed Automated Synoptic Observation System (ASOS) were collected to evaluate the accuracy of the products through Kling-Gupta efficiency (KGE), probability of detection (POD), false alarm rate (FAR), and critical success index (CSI). As a result, the new precipitation generated through the random forest model showed higher accuracy than each satellite rainfall product and spatio-temporal variability was better reflected than other statistical merging methods. Therefore, a random forest-based ensemble satellite precipitation product can be efficiently used for hydrological simulations in ungauged basins such as the Mekong River.

  • PDF

A Study on AI-based Composite Supplementary Index for Complementing the Composite Index of Business Indicators (경기종합지수 보완을 위한 AI기반의 합성보조지수 연구)

  • JUNG, NAK HYUN;Taeyeon Oh;Kim, Kang Hee
    • Journal of Korean Society for Quality Management
    • /
    • v.51 no.3
    • /
    • pp.363-379
    • /
    • 2023
  • Purpose: The main objective of this research is to construct an AI-based Composite Supplementary Index (ACSI) model to achieve accurate predictions of the Composite Index of Business Indicators. By incorporating various economic indicators as independent variables, the ACSI model enables the prediction and analysis of both the leading index (CLI) and coincident index (CCI). Methods: This study proposes an AI-based Composite Supplementary Index (ACSI) model that leverages diverse economic indicators as independent variables to forecast leading and coincident economic indicators. To evaluate the model's performance, advanced machine learning techniques including MLP, RNN, LSTM, and GRU were employed. Furthermore, the study explores the potential of employing deep learning models to train the weights associated with the independent variables that constitute the composite supplementary index. Results: The experimental results demonstrate the superior accuracy of the proposed composite supple- mentary index model in predicting leading and coincident economic indicators. Consequently, this model proves to be highly effective in forecasting economic cycles. Conclusion: In conclusion, the developed AI-based Composite Supplementary Index (ACSI) model successfully predicts the Composite Index of Business Indicators. Apart from its utility in management, economics, and investment domains, this model serves as a valuable indicator supporting policy-making and decision-making processes related to the economy.

Effects of the Plant Inquiry Instruction using Rapid-cycling Brassica rapa on the Change of Plant Concept of the Elementary School Students (속성배추를 이용한 식물 탐구 수업이 초등학생의 식물 개념 변화에 미치는 효과)

  • Lee, Myung-Sun;Kim, Sung-Ha
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.277-291
    • /
    • 2009
  • This study is intended to develop plant inquiry instruction using Rapid-cycling Brassica rapa (RcBr) whose life cycle is relatively short, and to apply it to the elementary science instruction of the 4th grader and examine their plant concept, science inquiry skills and science-related attitudes. The materials were consisted of laboratory manuals for the students as well as teachers' guide. By observing the life cycle of RcBr, students can experience the conceptual learning of the plant's life cycle. In addition, this study investigated the cause of change in science inquiry skills and science-related attitudes by interviewing 12 students. It has shown that plant inquiry instruction using RcBr has meaningful effects on students' understanding of the plant concept, improving students' science inquiry skills, and changing students' science-related attitudes. Students who showed improvement in science inquiry skills were able to answer questions regarding science knowledge correctly. And students whose science related attitudes were improved had a positive attitude on cultivating RcBr. Students told that RcBr was an interesting and good material to inquire plant. Because of its small size and its relatively short life cycle of RcBR, it should be a desirable plant material for the inquiry instruction which can give rise to useful and meaningful results for the elementary school students.

  • PDF

Reverting Gene Expression Pattern of Cancer into Normal-Like Using Cycle-Consistent Adversarial Network

  • Lee, Chan-hee;Ahn, TaeJin
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.275-283
    • /
    • 2018
  • Cancer show distinct pattern of gene expression when it is compared to normal. This difference results malignant characteristic of cancer. Many cancer drugs are targeting this difference so that it can selectively kill cancer cells. One of the recent demand for personalized treating cancer is retrieving normal tissue from a patient so that the gene expression difference between cancer and normal be assessed. However, in most clinical situation it is hard to retrieve normal tissue from a patient. This is because biopsy of normal tissues may cause damage to the organ function or a risk of infection or side effect what a patient to take. Thus, there is a challenge to estimate normal cell's gene expression where cancers are originated from without taking additional biopsy. In this paper, we propose in-silico based prediction of normal cell's gene expression from gene expression data of a tumor sample. We call this challenge as reverting the cancer into normal. We divided this challenge into two parts. The first part is making a generator that is able to fool a pretrained discriminator. Pretrained discriminator is from the training of public data (9,601 cancers, 7,240 normals) which shows 0.997 of accuracy to discriminate if a given gene expression pattern is cancer or normal. Deceiving this pretrained discriminator means our method is capable of generating very normal-like gene expression data. The second part of the challenge is to address whether generated normal is similar to true reverse form of the input cancer data. We used, cycle-consistent adversarial networks to approach our challenges, since this network is capable of translating one domain to the other while maintaining original domain's feature and at the same time adding the new domain's feature. We evaluated that, if we put cancer data into a cycle-consistent adversarial network, it could retain most of the information from the input (cancer) and at the same time change the data into normal. We also evaluated if this generated gene expression of normal tissue would be the biological reverse form of the gene expression of cancer used as an input.