
Introduction

The Internet of Things (IoT) era has arrived, where the 

objects around us are able to interact with each other and 

cooperate with their neighbors to achieve common goals 

(Atzori et al., 2010). There are many IoT devices available 

on the market, and they are applied in various areas. 

Agriculture is no exception to this phenomenon. There 

have been many studies concerning IoT (Wang et al., 

2006; Vellidis et al., 2008; Nash et al., 2009; Kaloxylos et 

al., 2012), and some products have been developed, such 

as Edyn (EDYN-001, San Francisco, CA, Edyn).

Many of these employ batteries as their power source, 

but some utilize small solar modules instead. Solar 

modules, in which solar cells are connected in series, have 

many advantages for agricultural applications. They do 

not create pollution, require very little maintenance, and 

are easy to install anywhere. For these reasons, many 

studies have been conducted to evaluate the use of 

photovoltaic systems for agricultural operations. For 

example, a solar-powered sensor station for irrigation 

control (Kim et al., 2008) and a water content sensor 

using a solar module (Sun et al., 2009). As is well known, 

a solar cell generates electricity when light is incident 

upon it. The current of the generated electricity is propor-

tional to the radiation of the light. Therefore, it is theore-

tically possible to measure solar radiation using a solar cell.

Solar radiation is an essential parameter for plant 

growth. It has been analyzed in many agricultural studies. 

Some researchers have utilized accumulated solar 

radiation to develop models for yield prediction and 

harvest time decisions (Seshu and Cady, 1983; Roh and 

Lee, 1996). Furthermore, solar radiation has been 

employed for environmental controls, such as irrigation, 

carbon dioxide levels, and supplemental light (Klaring et 

al., 2007; Huang et al., 2010). Because the transmission of 

solar radiation through covering materials is an 
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important issue in greenhouse farming, various studies 

have been conducted on this topic over several decades 

(Bowman, 1970; Kim and Lee, 1998; Cabrera et al., 2009). 

A pyranometer, which is a device used to measure solar 

radiation, usually consists of a sensing component and a 

glass dome. The glass dome limits the spectral response 

and protects the sensing component from convection. 

The sensing component can be of either thermopile- or 

photodiode-type. Although this comprises an important 

sensor for agriculture, it is expensive.

This research was initiated to exploit a solar module as 

not only a power source but also a sensor to measure 

solar radiation. An IoT sensor yields several advantages 

for this purpose. First, it connects to the Internet and it 

can utilize information from the Internet. Second, it has 

its own processors that calculate digital data. By 

employing a current sensor with a suitable model, it is 

possible to measure solar radiation and reduce the cost of 

a pyranometer. Therefore, the objective of this research 

is to develop a multilayer perceptron (MLP) model to 

estimate solar radiation using a solar module and to 

analyze the applicability of the model.

Materials and Methods

Independent variables to train MLP

Short-circuit current of a solar module
A solar cell creates free electrons and positive holes 

from incident light energy. This phenomenon is called the 

photovoltaic effect. Kerr et al. (1967) noted that the 

short-circuit current of a Si solar cell is proportional to 

the intensity of the incident solar radiation. Whillier 

(1964) and Kerr et al. (1967) began to develop a photo-

diode pyranometer based on this phenomenon. Thus, the 

short-circuit current could comprise a primary factor in 

estimating solar radiation.

However, auxiliary factors, such as the angle of 

incidence (AOI) of the sunlight, device temperature, tilt 

orientation, mechanical and optical asymmetries of the 

solar module, thermal response time, and air mass affect 

the short-circuit current (King and Myers, 1997). In 

addition, Parretta et al. (1998) estimated four loss 

factors: the reflection of unpolarized light, the spectrum 

and intensity of the light, and the temperature of the solar 

module. The auxiliary factors considered in this study are 

explained in the following subsections.

Ambient temperature
The temperature of the solar cell affects the short- 

circuit current. When the temperature increases, the 

short-circuit current increases and the open-circuit voltage 

decreases. In a previous study, the generation efficiency 

of a Si solar cell decreased by 69% at an operating 

temperature of 64°C compared with its efficiency at 25°C 

(Malik and Damit, 2003). However, because the solar 

cells in a solar module are covered by the front cover and 

frame, measuring the temperature of a solar cell is 

difficult under the experimental conditions in this study. 

King et al. (2004) reported that the cell temperature was 

related to the temperature of the back panel of the solar 

module and that the temperature of the back panel was 

affected by the ambient temperature. Accordingly, the 

ambient temperature was adopted as an independent 

variable for the ANN model.

Angle of incidence of sunlight
Although the intensity of the sunlight is constant, the 

short-circuit current of the solar module can change 

according to the AOI. As shown in Figure 1 and Eq. (1), the 

intensity of solar radiation arriving at the surface of the 

solar module is determined by the inclination angle and 

orientation of the solar module and the position of the 

sun. Moreover, the absorption and reflection from the 

glass cover of the solar module affect the intensity of the 

solar radiation reaching the solar cells in the solar 

module. The reflection rate of the glass cover significantly 

increases at an AOI of 40° (King, 1997). As a result, the 

intensity of the sunlight is proportional to the cosine of 

the AOI, and a slight error occurs owing to the glass cover.

The solar module is usually installed with a fixed tilt 

angle, for efficient power generation. However, in this 

study, the solar module was installed parallel to the 

Figure 1. Angular relationships between the AOI and the surface of 
the solar module (h: solar altitude angle, α: surface azimuth angle, 
β: solar azimuth angle, θ: inclination angle of the surface).
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ground because a solar module on a small IoT device is 

usually installed parallel to the body as this can reduce 

ambiguities that can result from other factors such as the 

reflection of sunlight or installation direction. When the 

solar module is installed parallel to the ground (θ = 0° and 

α = 0°), the solar altitude angle is 90° - AOI.

The AOI may be calculated from the solar altitude angle 

(h), the inclined angle of the surface (θ), the surface 

azimuth angle (α), and the solar azimuth angle (β) as 

follows:

cos sin· cos cos·sin·cos               (1)

Air mass
The solar cell provides different responses based on 

different light spectra. For example, a mono-crystal Si 

exhibits good responsiveness at a wavelength of 900 nm, 

but poor responsiveness under 300 nm or over 1200 nm. 

As the sunlight passes through the atmosphere, the light 

is scattered and absorbed by air molecules. Therefore, 

the spectrum of the sunlight reaching the solar module 

varies according to the length of the atmosphere through 

which the sunlight passes, and this phenomenon must be 

considered in estimating the solar radiation from the 

solar module. Because the air mass (AM) provides an 

index of the optical path length through the atmosphere, 

this was chosen as an independent variable. The AM was 

calculated using Eq. (2), as proposed by Kasten and 

Young (1989):

AM≈
cos








                (2)

where Zs is the solar zenith angle, which is the 

difference between 90° and the solar altitude angle (Zs = 

90 –h).

Cloud cover
When the solar module is partially or fully shaded by 

clouds, the short-circuit current of the solar module 

sharply decreases. The cloud cover provides an index of 

the fraction of the sky covered by clouds, and has an 

inverse relationship with the solar radiation. It is a 

dimensionless parameter, and is published on the 

Internet by the Meteorological Administration. It was 

assumed that an IoT device could collect this information 

from the Internet.

Some researchers have attempted to estimate the solar 

radiation using the cloud cover. Kasten and Czeplak 

(1980) described the relationship between the solar 

radiation and amount of cloud, and this is expressed by 

Eqs. (3) and (4).






  

 


             (3)




 sin              (4)

where IG and IGC are the global radiation under cloudy 

and cloudless weather conditions, respectively, and α is 

the AOI. The constant values (A, B, C, and D) must be 

estimated from the amount of cloud and the solar 

position. In addition, Yoo et al. (2008) applied these 

relations to estimate the solar radiation for major cities in 

Korea, and demonstrated strong correlations.

Experimental setup and data acquisition

The solar module used for our experiment was 

connected in series with 36 mono-crystalline solar cell 

pieces without bypass diodes (TSM-10M, Shanghai Top 

Solar Green Energy, China). The maximum power was 10 

W, and the open-circuit voltage was 21 V. The short- 

circuit current coefficient was 0.05%/°C and the 

maximum short-circuit current was 0.67 A under 

standard test conditions. Detailed specifications of the 

solar module are listed in Table 1.

Table 1. Specifications of the experimental solar module

Electrical specifications

Power 10 W

Open-circuit voltage 21.0 V

Maximum power voltage 17.5 V

Short-circuit current 0.64 A

Maximum power current 0.57 A

Efficiency 14%

Temperature specifications

NOCTa) 45 °C ± 2 °C

Short-circuit current coefficient +0.05%/°C

Open-circuit voltage coefficient -0.34%/°C

Maximum power coefficient -0.5%/°C

Power output tolerance ±5%

a) Nominal operating cell temperature
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A Hall effect-based linear current sensor (WCS1702, 

Winson Semiconductor Corp., Taiwan) and a data acqui-

sition device (USB-6251, National Instrument Corporation, 

USA) were utilized to measure the short-circuit current, 

as shown in Figure 2. The sensitivity of the current sensor 

was 1.0 mV·mA-1. The measured data was stored in a 

MySQL (5.1.41., Oracle Corporation, USA) database. The 

short-circuit current was measured each second, and the 

average value per minute was employed. The ambient 

temperature and the reference solar radiation data were 

collected every minute using a PT-100 Ω sensor and a 

pyranometer (SYE-420M2007PM4, ShinYoung Electronics, 

Korea), respectively. The measurable range of the pyrano-

meter was between 0 and 2000 W·m-2, and the error was 

less than ±18 W·m-2 over a temperature range of −40°C to 

80°C. 

The experiment was conducted for approximately a 

year, from April 14 2011 to April 24 2012. There was 

some data loss for several days owing to weather 

problems, such as heavy snow or typhoons. All devices 

were installed on the roof of a one-story building at the 

Gyeonggi-do Agricultural Research and Extension 

Services, Republic of Korea (latitude: 37°13'21.27"N, 

longitude: 127°2'30.74"E), at a height of approximately 

5.5 m from the ground. The solar module and pyrano-

meter were placed parallel to the ground. The hourly 

cloud cover data were collected from the Korean 

meteorological administration.

MLP learning for the model development

MLP was employed to create various models because it 

exhibits excellent potential for the prediction and 

classification of multi-variable data. In addition, it also 

achieved an accurate answer with a relatively lower 

computational complexity after the initial learning 

process. This represents a kind of black-box approach. 

This is usually employed to derive the results of a model 

rather than to confirm the mechanistic principles of the 

model.

The MLP method has frequently been employed to 

predict solar radiation since the mid-1990s. Elizondo et 

al. (1994) developed a neural network model that can 

predict daily solar radiation as a function of the daily 

maximum and minimum ambient temperatures, total 

daily precipitation, daily clear sky radiation, and day 

length. Reddy and Ranjan (2003) also developed an MLP 

model for estimating the mean daily and hourly values of 

the solar global radiation per month. In addition, there 

have been various trials conducted to estimate solar 

radiation using the MLP method (Sfetsos and Coonick, 

2000; Dorvlo et al., 2002; Mellit et al., 2005).

In this study, the Fast Artificial Neural Network Library 

(FANN, version 2.1), which is an open source library and 

binds to various programming languages, was used to 

implement the MLP. The Python language was used to 

implement the learning and evaluation of the MLP using 

FANN. The input variables, algorithms, learning rate, 

activation function, number of hidden layers, and 

number of neurons should be chosen before MLP 

learning. The combinations of input variables for the MLP 

learning process were determined as shown in Table 2. 

Because the FANN library uses data ranging from 0 to 1, 

all input variables were standardized, and the output was 

Figure 2. System configuration for the measurement and recording 
of the short-circuit current from the solar module.

Table 2. Combinations of input variables for MLP learning

Combination Input variables

I short-circuit current, ambient temperature

II short-circuit current, ambient temperature, AOI

III short-circuit current, ambient temperature, AOI, air mass

IV short-circuit current, ambient temperature, AOI, air mass, cloud cover

V short-circuit current, AOI, air mass, cloud cover
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destandardized to obtain the estimated solar radiation.

The configuration values chosen for the learning cycles 

are shown in Table 3. The algorithms consisted of standard 

backpropagation, batch backpropagation, RPROP (Igel 

and Hüsken, 2000) and Quick PROP (Fahlman, 1988). 

The standard backpropagation algorithm updates the 

weights after each training pattern, whereas batch 

backpropagation updates the weights after calculating 

the mean squared error (MSE) for the whole training set. 

The RPROP and Quick PROPs algorithms are advanced 

batch backpropagation algorithms described by Igel and 

Hüsken (2000) and Fahlman (1988), respectively. The 

learning rates, which affect the learning speed, were 

chosen arbitrarily as 0.5, 0.7, and 0.9. Five activation 

functions, which convert the given inputs to an output, 

were employed. The sigmoid function is the most 

frequently used activation function. The linear function 

requires less computing power. The Gaussian symmetric, 

sin symmetric, and cos symmetric functions were also 

utilized. One or two hidden layers were used because 

Negnevitsky (2004) explained that commercial MLPs 

incorporate three or sometimes four layers. When the 

number of neurons in the second hidden layer was zero, a 

second hidden layer was not utilized. Each layer could 

use different activation functions.

The total number of combinations for the MLP learning 

process was 14,400. Each learning cycle was repeated 

three times with random data, maintaining the same 

configuration. The data were divided into three groups: 

training, validation, and testing. First, 50 days of data 

were randomly chosen to test the developed models. 

Seventy percent of the remaining data were used for 

training, and the remainder were assigned for validation 

to check for overfitting.

The MSE is an indicator of the performance evaluation 

of the model (Eq. (5)). A smaller MSE indicates better 

performance because the backpropagation training 

algorithm aims to minimize this. The difference between 

the MSEs for training and validation was used to judge 

overlearning.

MSE



∑i

 




              (5)

where n is the number of data points for the training 

dataset, and sMSR and sESR are the standardized 

measured and estimated solar radiation, respectively.

Evaluation method

Various indices have been considered to evaluate the 

MLP model. Elizondo et al. (1994) utilized the coefficient 

of determination (R2 value) for evaluation. Reddy and 

Ranjan (2003) used the maximum absolute error, mean 

absolute relative deviations, and percentage relative 

deviation to compare MLP models for the estimation of 

solar radiation with other correlation models. However, 

most researchers have employed the root-mean-squared 

error (RMSE) for evaluation (Sfetsos and Coonick, 2000; 

Dorvlo et al., 2002; Elminir et al., 2005). The daily RMSE 

was chosen as an evaluation index in this study.

The daily RMSE is defined as

RMSE





∑

  

 




              (6)

where n is the number of data points on a day, and MSR 

and ESR are the measured and estimated solar radiation, 

respectively.

Results and Discussion 

Characteristics of solar radiation and 

short-circuit current

The short-circuit current is the most important 

variable in estimating solar radiation. Therefore, the 

short-circuit current and solar radiation were compared. 

One sunny day to represent each season was chosen 

because sunny days exhibited the full range of solar 

radiation (Fig. 3). The daily mean cloud cover of each day 

was between 1 and 3, and the average temperatures were 

Table 3. Configuration values for MLP learning

Algorithms
Learning 

rates
Activation functions

Backpropagation 0.5 Sigmoid

Batch backpropagation 0.7 Linear

RPROP 0.9 Sin symmetric

Quick PROP Cos symmetric

Gaussian symmetric

Numbers of neurons in hidden layers

1st layer 2nd layer

5 0

7 5

9 7

9
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characteristic of each season. Figure 3 is presented such 

that 1200 W·m-2 of solar radiation was equivalent in scale 

to 700 mA of short-circuit current. As shown in Figure 3, 

the short-circuit current varied along with solar 

radiation. However, the details of these changes were 

different.

First, the patterns of the solar radiation and short- 

circuit current were rather different. The solar radiation 

exhibited bilateral symmetry, whereas the short-circuit 

current was biased toward the later times of the day. In 

the morning, the ambient temperature was relatively 

low, and this might have caused a lower short-circuit 

current. Second, the amplitude of solar radiation was 

greater than that of the short-circuit current. As shown in 

Figure 3(a), solar radiation fluctuated around 8 am, but 

the short-circuit current did not. Because the maximum 

solar radiation in summer (Fig. 3(b)) was higher than in 

the other seasons, the tendency of the short-circuit 

current not to follow the changes in solar radiation 

became stronger. Overall, increases in solar radiation 

occurred prior to increases in the short-circuit current, 

and the increases and decreases of the short-circuit 

current were sharper than those of solar radiation.

To collect the correct short-circuit current, the solar 

module should be installed parallel to the ground. 

Although this decreases the efficiency of the solar 

module, it can reduce ambiguities that may result from 

the reflection of sunlight. The total radiation incident on 

the tilted solar module consists of three components: 

direct radiation, diffuse radiation, and radiation reflected 

from the ground. The latter two components could 

induce increased errors in the estimation of solar 

radiation.

Results of MLP learning

The MSEs of the best MLP model were 0.0016 and 

0.0022 for the training and validation datasets, 

respectively. Because the difference between the MSEs 

was under 1 W·m-2, the overfitting due to overlearning 

was not severe. The desired MSE was set to 0.0015 for 

early stopping. However, none of the developed models 

achieved an MSE under 0.0015.

The RMSE of each learning cycle and the average over 

three repetitions were calculated. The average of RMSE of 

the best ANN model was 48.13 W·m-2. This result is better 

than that of the regression model, for which the RMSE 

was 66.67 W·m-2 (Kim et al., 2012). Table 4 shows the 

configuration of the best MLP model.

The best model for estimating solar radiation was 

applied for the days chosen in Figure 3, and the MSR and 

ESR were compared, as shown in Figure 4. The difference 

Figure 3. Comparison of solar radiation and short-circuit current on (a) April 17, (b) June 20, and (c) October 1 2011 and (d) January 
6 2012. Temp. and C.V. denote the daily mean ambient temperature (°C) and cloud cover (overcast=10) during sunlight hours.

Table 4. Configuration of the best MLP model

Combination of input 

variables

Learning 

rate
Algorithm

IV 0.7 Batch backpropagation

Number of neurons and activation function in hidden layer

1st layer 2nd layer

5, cos symmetric 9, sigmoid
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between the ESR and MSR was largely reduced compared 

with the difference between the short-circuit current and 

MSR. The discrepancy between the increase in solar 

radiation and the increase in the short-circuit current 

almost disappeared. The daily RMSEs were evaluated as 

45.75, 40.22, 67.50, and 26.72 W·m-2 on April 17, June 20, 

and October 1 2011 and January 6 2012, respectively.

Accuracy analysis based on the RMSE

To determine the main causes of the errors, the daily 

variations in the MSR and ESR were examined. Figure 5 

illustrates the daily variations in the MSR and ESR on July 

19 2011, when the daily RMSE was 172.65 W·m-2, which 

was the worst RMSE value of the model. As shown in 

Figure 5, there were many sudden variations in the MSR, 

and the ESR could not follow those changes.

Figure 6 illustrates the relationship between the RMSE 

and cloud cover. The cloud cover provides an index of the 

fraction of the sky covered by clouds, with values of 0 and 

10 representing a very sunny day and very cloudy day, 

respectively. The probability of fluctuations in solar 

radiation is lower on extremely sunny or very cloudy 

days. Therefore, the RMSE is lower for cloud cover values 

of 0, 9, and 10.

The main reason for this phenomenon lies the 

difference between covered areas that receive sunlight. 

The covered area of a pyranometer was significantly 

smaller than that of a solar module. If there are some 

variations in solar radiation over an area that is relatively 

small compared to a solar module but sufficiently wide to 

cover a pyranometer, this affects the measurement of the 

pyranometer but a solar module does not detect the 

difference. This is an inherent limitation of employing a 

solar module to measure solar radiation. Although the 

Figure 4. Comparison of the measured and estimated solar radiation on (a) April 17, (b) June 20, and (c) October 1 2011 and (d) January 6 2012.

Figure 5. The worst daily RMSE on July 19, 2011, with sudden changes in solar 
radiation.

Figure 6. Relationship between RMSE and cloud cover
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developed model exhibits good results, it does not 

completely overcome the limitation.

Accumulated solar radiation

The accumulated solar radiation, which is an 

important factor for agricultural use, has been employed 

to develop a plant growth model, estimate yields, or 

decide harvest times (Seshu and Cady, 1983; Roh and Lee, 

1996; Linker and Seginer, 2003; Rosales et al., 2006). 

Although the developed model did not perform well in 

estimating sudden changes in solar radiation, the 

accumulated solar radiation was estimated reasonably 

accurately. Figure 7 illustrates the accumulated solar 

radiation on July 19 2011 depicted in Figure 5. On that 

day, the ESR did not follow the changes of the MSR. 

However, the accumulated solar radiations were 7.88 

and 7.56 kWh·m-2 for the MSR and ESR, respectively, and 

the estimation error of the model for the accumulated 

solar radiation was calculated as 4.06%.

This result represents a reasonable improvement 

compared to other models. Dorvlo et al. (2002) reported 

that the minimum RMSEs of the RBF and MLP were 

230.74 Wh·m-2 and 280.78 Wh·m-2, respectively. 

Furthermore, the RMSE of Elizondo et al. (1994)’s model 

varied from 811.76 to 1,011.92 Wh·m-2. The minimum 

RMSE of the developed model was only 0.24 Wh·m-2, and 

the average RMSE was 239.50 Wh·m-2. Thus, the 

developed model exhibited superior results. It could be 

useful to estimate the accumulated solar radiation even 

on the days when solar radiation fluctuates.

Conclusions 

The short-circuit current of a solar cell is known to be 

proportional to solar radiation. This study was conducted 

to develop an MLP model to calculate solar radiation 

using the short-circuit current of a solar cell. The average 

RMSE for the best MLP model was evaluated as 48.13 

W·m-2. The accuracy of this model was reduced on days 

when solar radiation frequently varied, but the accumulated 

solar radiation was reasonably accurate. The average 

RMSE of the daily accumulated solar radiation was 

evaluated as 239.50 Wh·m-2.

Measuring solar radiation using an MLP model and 

solar module has some advantages. Although it requires 

time to collect the data and train the model, it only 

requires a small amount of computing power and time to 

estimate solar radiation using the trained model. The 

learning process could be accomplished using a 

high-powered computer, and the trained model could be 

applied on a small IoT device or embedded system. The 

second advantage lies in the simplicity of model 

replacement. An MLP model could be independently 

developed. If a new model is developed, then it is easy to 

replace the old model file with the new one. Finally, this 

method has an economic advantage. If an IoT device 

employs a solar module as a power source, then it is only 

necessary to add a current sensor. However, the price of a 

photodiode-type pyranometer is over $200, and the 

thermopile type is even more expensive. Based on these 

advantages, the developed model has potential for use in 

agricultural applications.
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Figure 7. Comparison between the ESR and MSR of the accumulated solar radiation on the day with the worst RMSE.
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