• Title/Summary/Keyword: Learning control gain

Search Result 90, Processing Time 0.028 seconds

Time-varying Proportional Navigation Guidance using Deep Reinforcement Learning (심층 강화학습을 이용한 시변 비례 항법 유도 기법)

  • Chae, Hyeok-Joo;Lee, Daniel;Park, Su-Jeong;Choi, Han-Lim;Park, Han-Sol;An, Kyeong-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.399-406
    • /
    • 2020
  • In this paper, we propose a time-varying proportional navigation guidance law that determines the proportional navigation gain in real-time according to the operating situation. When intercepting a target, an unidentified evasion strategy causes a loss of optimality. To compensate for this problem, proper proportional navigation gain is derived at every time step by solving an optimal control problem with the inferred evader's strategy. Recently, deep reinforcement learning algorithms are introduced to deal with complex optimal control problem efficiently. We adapt the actor-critic method to build a proportional navigation gain network and the network is trained by the Proximal Policy Optimization(PPO) algorithm to learn an evasion strategy of the target. Numerical experiments show the effectiveness and optimality of the proposed method.

Adaptive fuzzy learning control for a class of second order nonlinear dynamic systems

  • Park, B.H.;Lee, Jin S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.103-106
    • /
    • 1996
  • This paper presents an iterative fuzzy learning control scheme which is applicable to a broad class of nonlinear systems. The control scheme achieves system stability and boundedness by using the linear feedback plus adaptive fuzzy controller and achieves precise tracking by using the iterative learning rules. The switching mode control unit is added to the adaptive fuzzy controller in order to compensate for the error that has been inevitably introduced from the fuzzy approximation of the nonlinear part. It also obviates any supervisory control action in the adaptive fuzzy controller which normally requires high gain signal. The learning control algorithm obviates any output derivative terms which are vulnerable to noise.

  • PDF

A CMAC-based pressure tracking controller design for hydroforming process (CMAC를 이용한 하이드로 포밍 공정의 압력제어기 설계)

  • 이우호;박희재;조형석;현봉섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.302-307
    • /
    • 1989
  • A pressure tracking control of hydroforming process is considered in this paper. To account for nonlinearities and uncertainties of the process, an iterative learning control scheme is proposed using Cerebellar Model Arithmatic Computer (CMAC). The experimental result shows that the proposed learning control is superior to any fixed gain controller in the sense that it enables the system to do the same work more effectively as the number of operation increases.

  • PDF

The Speed Control of Induction Motor using Automatic Neural Network Gain Regulator (신경망이득 자동조절기를 이용한 유도모터 속도 제어)

  • Park, Wal-Seo;Kim, Yong-Wook;Lee, Sung-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.53-57
    • /
    • 2006
  • PID controller is widely uesd as automatic equipment for industry. However when a system has various characters of intermittence or continuance, a new parameter decision for accurate control is a hard task. As method of solving this problem, in this paper, a Neural Network gain automatic regulator as PID controller functions is presented. A property feedback control gain of system is decided by a rule of Delta learning. The function of proposed automatic Neural Network gain regulator is verified by speed control experiment results of Induction Motor.

LEARNING PERFORMANCE AND DESIGN OF AN ADAPTIVE CONTROL FUCTION GENERATOR: CMAC(Cerebellar Model Arithmetic Controller)

  • Choe, Dong-Yeop;Hwang, Hyeon
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.125-139
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, it is necessary to analyze the effects of the CMAC control parameters on the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with pre specified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

Actuator Fault Detection and Adaptive Fault-Tolerant Control Algorithms Using Performance Index and Human-Like Learning for Longitudinal Autonomous Driving (종방향 자율주행을 위한 성능 지수 및 인간 모사 학습을 이용하는 구동기 고장 탐지 및 적응형 고장 허용 제어 알고리즘)

  • Oh, Sechan;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.129-143
    • /
    • 2021
  • This paper proposes actuator fault detection and adaptive fault-tolerant control algorithms using performance index and human-like learning for longitudinal autonomous vehicles. Conventional longitudinal controller for autonomous driving consists of supervisory, upper level and lower level controllers. In this paper, feedback control law and PID control algorithm have been used for upper level and lower level controllers, respectively. For actuator fault-tolerant control, adaptive rule has been designed using the gradient descent method with estimated coefficients. In order to adjust the control parameter used for determination of adaptation gain, human-like learning algorithm has been designed based on perceptron learning method using control errors and control parameter. It is designed that the learning algorithm determines current control parameter by saving it in memory and updating based on the cost function-based gradient descent method. Based on the updated control parameter, the longitudinal acceleration has been computed adaptively using feedback law for actuator fault-tolerant control. The finite window-based performance index has been designed for detection and evaluation of actuator performance degradation using control error.

Iterative Learning Control Algorithm for a class of Nonlinear System with External Inputs (외부입력이 존재하는 비선형 시스템의 반복학습제어 알고리즘에 관한 연구)

  • Jang, H.S.;Lim, M.S.;Lim, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1278-1280
    • /
    • 1996
  • In this paper, an Iterative learning control algorithm is presented for a class of non linear system which have external inputs or disturbances. The acceleration of error signal is used to update the next control signal. It is shown that the feedback gain can be deter.ined so that the overall errors are convergent.

  • PDF

A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System (수직다물체시스템의 간접적응형 분산학습제어에 관한 연구)

  • Lee Soo Cheol;Park Seok Sun;Lee Jae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.4
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.

CMAC (Cerebellar Model Arithmetic Controller)

  • Hwang, Heon;Choi, Dong-Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.675-681
    • /
    • 1989
  • As an adaptive control function generator, the CMAC (Cerebellar Model Arithmetic or Articulated Controller) based learning control has drawn a great attention to realize a rather robust real-time manipulator control under the various uncertainties. There remain, however, inherent problems to be solved in the CMAC application to robot motion control or perception of sensory information. To apply the CMAC to the various unmodeled or modeled systems more efficiently, It is necessary to analyze the effects of the CMAC control parameters an the trained net. Although the CMAC control parameters such as size of the quantizing block, learning gain, input offset, and ranges of input variables play a key role in the learning performance and system memory requirement, these have not been fully investigated yet. These parameters should be determined, of course, considering the shape of the desired function to be trained and learning algorithms applied. In this paper, the interrelation of these parameters with learning performance is investigated under the basic learning schemes presented by authors. Since an analytic approach only seems to be very difficult and even impossible for this purpose, various simulations have been performed with prespecified functions and their results were analyzed. A general step following design guide was set up according to the various simulation results.

  • PDF

Development for a method of measurement in equilibrium sense (평형감각 측정기술의 개발)

  • 이문영;정영자;김규겸;이성호;박병림
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1999.03a
    • /
    • pp.3-6
    • /
    • 1999
  • The study was performed to evaluate the sense of equilibrium by means of rotary chair system in middle school girls with dance learning. Control of equilibrium, which is the most important function in dancing, is maintained by vestibular, visual, and proprioceptive inputs. Experimental groups were divided into trained group with dance (experimental group, 13~14 ys, n=15) and untrained group (control group, 13~14 ys, n=15). experimental group was trained by programmed dancing for 12 weeks, 45 min/day and 5 day/week. Gain of eye movement was measured for vestibulocular reflex (VOR), visual vestibular stimulation (VVOR), optokinetic stimulation(OKN), and visual fixation (VFX). The gain of eye movement at higher than 0.08 hz was significant decrease in experimental group, and VVOR showed the similar fashion to VOR. The gain in OKN and VFX was not significant difference between experimental and control groups. These results suggest that programmed training of dancing improves control of balance by adaptation of the vestibular function, and rotary chair system would be useful to evaluate the sense of equilibrium ability.

  • PDF