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ABSTRACT
As an adaptive control function generator, the C(MAC (Cerebellar Model

Arithmetic or Articulated Controller) based learning control

attention to realize a
various uncertainties.
the CMAC application

There remain,
to robot

rather robust real-time manipulator control
however,
motion

has drawn a great
under the
inherent problems to be solved in

control or perception of sensory

information. To apply the CMAC to the various unmodeled or modeled systems more

efficiently, It is
parameters on the trained net,
Although the CMAC control
learning gain, input offset,
the
fully investigated vyet.
considering the shape of the
algorithms applied.

In this paper, the
performance is investigated
authors. Since an
impossible for this purpose,

prespecified functions and their

parameters
and ranges of input variables play a key role
learning performance and system memory requirement,
These parameters
desired function

various

necessary to analyze

interrelation
under the
analytic approach only seems to be very difficult and even
sinulations
results

such as

basic

the effects of the CMAC control
size of the quantizing block,
in
these have not been
should be determined, of course,
to be trained and learning
of

these parameters

learning schemes

with learning
presented by

performed with
general step

have been

were analyzed, A

following design guide was set up according to the various simulation results.

1. INTRODUCTION
The adaptive

robotic systems

controller for complicated
is confined wumostly to the
experimental stage because it requires heavy
computing of real time parameter
identification based on some performance
criteria and management of sensitivity on
sensory inputs. It usually involves a
complex algorithm, For this reason, the robust
adaptive controller based on the biological
structure and function have drawn a great
attention recently. How to achieve a great
degree of the robustness, adaptation, real
time control and easy learning is the major
focus on this area,.

Research and application of the artificial
neural net to the robot system control and
perception have become widely spreaded
for a few years around the world with an aim
of realizing the structure and function of

biological organisms- especially of human
brainl17]. Through the massively parallel
connection of processing elements with

learning capability and fault-tolerance, the
neural net approach is known to overcome the
limitations and weakness posed by the

conventional information
processing[2].

Anatomical and neurophisical
cerebellum have
functional
basic

sequential

studies of the
led to a theory concerning the
operations of the cerebellum. Some
principles of how the cerebellum

675

accomplishes motor behavior have been
organized into a mathematical model,
Cerebellar Model Articutation or Arithmetic

Controller(CMAC) by Albus[2,4,5]. Since then,
research on the CMAC bhared general learning
controller has been attempted to control the
various systems including robot because of the
simple structured nature of the CMAC[2,6-9].
The learning convergence of the CMAC was
proved by authors identifying the network as a

kind of one layer linear associator having a
linear activation functionl10]. Two
types of basic learning algorithms of the
CMAC, sequential error correction(SEC) and

random' error correction(REC) under delta rule
have been proposed and analyzed with different
learning gains{10].

To apply the CMAC to the various unmodeled

or modeled systems more efficiently, It |is
necessary to analyvze the effects of the CMAC
control parameters on the trained net,
Parameters such as size of the quantizing
block K, learning gain G, input offset, and
ranges of input variables play a key role in
the learning performance and system memory
requirement. However, these have not been
fully investigated yet. Values of control
parameters are chosen in most cases on an ad
hoc basis. Values of parameters should be
determined, of course, by also considering the

shape of desired function to be trained and
learning algorithms applied.



In this paper, with predetermined input
variable offset and ranges (refer to [10] for

the offset and uniform quantized schene
handling various input ranges ), the
interrelation of quantizing size X and
learning gain ¢ is investigated with learning
perfourmance under two types of learning
schemes, SEC  and REC., The system menory
required for the C(MAC application depends on
the quantizing size K and ranges of the CMAC

input variables. The formular for the required
system memory refers to the refernce [10].
Since an analytic approach only seems to be
very difficult and even impossible for this
purpose, various simulations have been
performed with quite different shaped nodel
functions and their results were analyzed and
some of them are presented. A general step
following design guide was set up through the
characteristics of the CMAC network analyzed
theoretically and experimentally.

2. SIMULATION
2.1 Basic Learning Algorithm
Equivalent learning period

Pesired function to be learned:
o= SincX)
[nput range: 0 <« X 360 (deg)

Interval of sampled node inputs: 5 deg
Selected size of quantizing block:
5, 10, 20, 30, 40, 60
CMAC offset: 1 = 1 deg
(1) Batch Sequential Error Correction(SEC)
Learning gains which avoids divergence at

the initial training are selected from
0.1~1.0 by 0.1
0.09~0.01 by 0.01
0.009~0.001 by 0.01
Number of training epoch: 0~100
Since the sampled node interval was
specified as 5 deg, the case of K=5 does not

have any interference effect at all generating
the orthogonal CMAC wmapped binary pattern
vectors. As a result, the function is trained
completely by one shot when gain 1is one,
It is not shown clearly in fig.la because it
was plotted at the training epoch of 100.

As K increases from five, values of the
initial gains, which avoid the divergence,
dricrease., Gains located closely to the
initial divergent gain converge at the earty
stage but show a diverging trend when the
learning epoch increases[10].

The distributing and interference effect can

be seen in fig.1b. As values of K increases,
the corrected delta values are distributed
over the input space broadly resulting fast

rms error convergence, However, the converging
rate weakens earlier than smaller values of X
as learning epoch increases because of the
interference,

When K is equal to 5, the converging slope
is logarithmically straight because of the
orthogonality of the pattern vectors, The
slope is getting steep as learning galn
increases up to the infinite value when the

value of gain is on~.

Fig.1lc shows the extended
to 3000 with K=40. The
the slopes for the
maintained until it reaches its global
minimum, It is not plotted but converged
learned rms errors from the unlimited learning
epoch with G=0.05 and G=0.01 were 1.395131E-6

learning epoch up
parallel trend of
various gains is
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at learning epoch of 19000 and 7.898105E-6 at
learning epoch of 55500 respectively. In a
case of the batch SEC, we c¢an see that
with a fixed K higher value of gains converges
faster and reaches lower global minimum once
it ic within the converging range.
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Fig.1 Batch type SEC learning for P=Sin(X)



(2) On-Line Sequential Error Correction(SEC)
Selected learning gain:
0,2~1.0 by 0.2
Number of training epoch: 0~100

As batch type SEC does, on-line SEC has the
same learning effect after one epoch training
with K=5 as shown in fig.2a and fig.2b. Fig.2a
shows the distributing and interference
effects of K at the learning epoch of 100.
When the value of K is large, the learning
effect is interfered more with large values of
G. However, this fact 1is rather slowly
occured with small values of K.

With smaller gain, the learned performance
is rather low because of the less distributing
effects. From this we can see that as K
increases the shape of the learned ras
error trend becomes a rather bowl type. This
bow! type shape is flattened as learning epoch
increases more and more.

At the early stage of
is not shown clearly in Fig.2b because of the
plotting interval of learning epoch, large K
shows a better learning. It is noted, however,
the size of K should be proper to the shape of
the function to be trained.

Fig.2c shows trends of the various gains
with a fixed K of 40 when learning epoch is
extended up to 3000. It shoud be noted the

learning, although it

smaller gain catches larger gain as learning
epoch increases. This 1is contrary to the
result of the batch type SEC. Note, however,
practically the learning period is also
critical to the system performance as well.
For this reason, it 1is not recommended to
reduce the gain value small based on the
result of fig.2c when applying on-line SEC
learning.

(3) Random Error Correction(REC)
Selected learning gain:
0.2~1.0 by 0.2
Number of training 0~6000
At the first glance, Fig.3a seems to show a
chaotic behavior of trends with resepect to G
and K. The REC learning has the similar
behavior as SEC learning except the
nonaccumulating property caused by its random
selction of input patterns.
With a relatively small

K, the interference

is not serious as gain increases at learning
nuaber of 6000. The distributing effect is
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Fig.2 On-line type SEC learning for P=Sin(XD

However, this

values of K

rather good at high gains.
effect is interfered by large
when the shape of function has varying
curvature over K. Trends of the performance
from K=10 to K=60 can be explained by the
amount of the interaction between the
distributing and the interference with various
gains at this specific learned point.

Although it is not shown clearly the number

of training exactly in fig.3b, all sampled
node inputs are selected at least once at
training number of 403 with K=5. It is due to
the characteristics of REC learning which
randomly selects inputs among the sampled
nodes.

2.2 Functional Shape

Equivalent learning period

Learning algorithms:
On-line sequential error correction
Random error correction

Selected Learning gain:
0.2~0.8 by 0.2

Interval of sampled node inputs: 15

Selected size of quantizing block:
20, 30, 40, 60, 80, 120

CMAC offset: 1
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(1) Function 1

Desired function to be learned(fig.4a):

P = Cos(X)Cos(y)
Input range: X.Y & [0,180] (deg)
> On-~line SEC:

Trends of learned ras errors were
investigated up to learning epoch of 200,
Figure 5a and 5b show the rms error versus
learning gain G for various K values at

learning epoch of 200 and the rms error versus

learning epoch for various K values at G of
0.8 respectively. Since the wvalue of the
sampled node interval is 15, with X=20 the

learned performance is excellent.

The rms error does not vary significantly as
G varies or learning epoch increases with
relatively large K. This is due to the shape
of the function to be learned. 1In other words,
the function to be trained has a rather steep
variation of values over the distributed
region defined by K. As K increases, the value
of G does not improve the system performance
as it is desired. The difference between K=20
and K=30 will be reduced if the sampled
interval is defined less than 15, for example

2 REC:
Trends
investigated
which results
period of

of learned rms errors were
up to learning number of 70000
into the equivalent learning

on-line SEC, As shown in fig.s,

678

(a) P = Cos(XJ)Cos(Y) (b)Y P = 10X - 2Y

Fig.4 Desired functions to be trained.
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except the oscillating behavior of learned rms
error with an increase of learning number, the
REC learning shows a similar learned
performance and pattern of rms error versus G
and X.
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(2) Function 2
Desired function to be learned(fig.4b):
P =10X-2Y
Input range: X,Y € [-150,150]
<& On-line SEC:

Although the overall shape of the desired

function 1is flat, with large value of K
the effect of the interference caused by
the sequentially accumulated learning errors

increases when learning gain is high.
With small values of K such as 30 and 40,
larger gain shows better performance because

of the small distributing effect with little
interference as shown in fig.7a, at the
learning epoch of 200. As X increases, the
combined effect of the distributing and
interference makes the [learned system be
oscillatory with respect to gain.

It is shown that logarithmically straight

variation occurs at K=80 with respect to G.
However, the learned performance is quite poor
compared with K=60. It is expected as learning
epoch increases the oscillating behavior will
occur,

Similarly to the case of function type 1,
at K=20 since the interval of the sampled node
inputs is 15, the performance is rather
greater then other K values. Fig.7b shows
trends of rms error versus learning epoch at
G=0.4 with various K values.
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& REC:
Since input nodes are selected randomly and

also desired functionis a rather flat shape,
the correction amount distributed by the K is
not accumulated that much compared to the
on-line SEC even large value of G, Fig.8a
shows logarithmically linear trend of the
performance improval as gain increases.
Although it is not shown here, it is expected
the effect of the gain gets smaller as number

of learning increases. Other trends can be
analyzed similarly as on-line SEC. Fig.8b
shows trends of rms error versus learning

epoch at G=0,8 with various K values.

3. DESIGN GUIDE

The input offset of the CMAC is related to
the continuity property. With a fixed input
space, as the offset of the quantized block
becomes more precise, the mapped
non-dimensional CMAC input space gets bigger.

As the CMAC input space gets bigger, the size
of the quantizing block should be properly
increased to enlarge the distributing effect
of the error correction and to reduce the
required system memory. Given sampled node
inputs, as the offset between the quantized
blocks gets preciser, the CMAC can generate

more distinct linear interpolated results at
the untrained intermediate nodes.
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Fig.8 On~line SEC learning for P=ioX-2Y
The size of the quantizing block, K plays a
key role in the storage and retrieval of the
learned data in a distribute manner. In fact,
the CMAC learns unmodeled system behavior by
slicing desired fuction, which is wusually
nonlinear, into many precise linear segments.
The size of K should be determined considering

the slope of the {function to be trained.
Generally when the slope of the function is
steep over the mapped input space, the value

of K should be
an unproper size of K,
the CMAC can not be

decreased and vice versa. With
Jearning performance of
improved by increasing
training number or by varying learning gain.

With N number of different inputs, ideally
the system can do its best with N number of
memory., The reduction of the memory size,
however, is one of the important merits in
applying neuro nets while maintaining certain
fault-tolerance. Learning gain has a function
of the moderate adjustment toward the
minimum of the LMS(Least Mean Square) error,

The way of lear~ing is also quite critial
to its performance. The designer should decide
which learning should fit to their
application best among REC, SEC.

REC learning is good for handling a quite
large input space and off-line generating of
the desired system behavior such as
solving robot inverse kinematics or dynamics
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and calibration etc, While the SEC learning is
good for the type of applications that
learning is required with on-line error
measurement while a robot is in motion or
after one trial of task motion such as

robot trajectory control.

The CMAC controller can be inmplemented as a
reference function generator or an adaptive
control function generator, Considering
human’s motor behavior, many sub-CMAC
controllers can be connected hierarchically
according to the level of the object to be

controlled. The selective on-line learning can
be implemented depending on whether situation
of the task environment is normal or abnormal.
When applying the CMAC to learn the

unmodeled system behavior, following simple
design step is suggested from the analyzed
characteristics of the CMAC network.

I set offset a little preciser than
anticipated,
specify sampled node inputs.
set up regular CMAC input wvariable
space using the proposed quantizing
scheme[107.
size of K is selected 1/3~2/5 of CMAC
input variable range.
learning gain is selected as
0.8 for the regular REC
training.
nunber of learning epoch for SEC is
determined via on-line checking of the
system improvement at every epoch. In the
case of REC, checking of the system
improvement is suggested at every 10
times number of the sampled node inputs.
If the learned performance is not good,
reduce K by half and increase G by about
0.05~0.1 and go to step @ and repeat.

the

D&

&

0.4
and

to
SEC

)

@

® stop
4. CONCLUSION
The interrelation of control parameters
specially for the quantizing value K and

learning gain G was investigated by analyzing
trained results of the various model functions
with basic learning algorithas. A general
step following design guide was set up from
the characteristic of the CMAC analyzed
theoretically and experimentally.

The CMAC system controller <can be
extended to contol the integrated
system behavior employing several sub-CMACs of

different function generator and controller
connected each other Thierarchically in a
closed loop. Research and application of
this concept for the task of the sensor
integrated robot system <control is widely
open,

The development of the nonlinear CMAC
meta connected network for a function
generator and a decision controller is
undergone by authors to overcomne the

limitations posed by the linearity of the CMAC
network,
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