• Title/Summary/Keyword: Learning Trajectory

Search Result 254, Processing Time 0.032 seconds

The Pacing of Volume Lessons in American Elementary Textbooks Compared to Students' Development in Volume Measurement

  • Hong, Dae S.;Choi, Kyong Mi;Hwang, Jihyun;Runnalls, Cristina
    • Research in Mathematical Education
    • /
    • v.24 no.2
    • /
    • pp.83-109
    • /
    • 2021
  • In the early stage of lesson enactment process, teachers use textbooks and other resources to select tasks and activities. It follows that discrepancies between textbooks and research-recommended pathways for learning may lead to concerns or issues with pacing in the classroom. To explore this idea further, this study examined the alignment between three popular standards-aligned textbooks series and volume learning trajectories. The results indicated that the standards-based textbooks examined may lack attention to important topics in the pacing of volume instruction, and suggest the need to inform both pre-service and in-service teachers about the gap between textbook lessons and volume learning trajectories so that they will be able to reflect students' thinking in volume learning trajectory to their lessons.

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Anomalous Trajectory Detection in Surveillance Systems Using Pedestrian and Surrounding Information

  • Doan, Trung Nghia;Kim, Sunwoong;Vo, Le Cuong;Lee, Hyuk-Jae
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.4
    • /
    • pp.256-266
    • /
    • 2016
  • Concurrently detected and annotated abnormal events can have a significant impact on surveillance systems. By considering the specific domain of pedestrian trajectories, this paper presents two main contributions. First, as introduced in much of the work on trajectory-based anomaly detection in the literature, only information about pedestrian paths, such as direction and speed, is considered. Differing from previous work, this paper proposes a framework that deals with additional types of trajectory-based anomalies. These abnormal events take places when a person enters prohibited areas. Those restricted regions are constructed by an online learning algorithm that uses surrounding information, including detected pedestrians and background scenes. Second, a simple data-boosting technique is introduced to overcome a lack of training data; such a problem particularly challenges all previous work, owing to the significantly low frequency of abnormal events. This technique only requires normal trajectories and fundamental information about scenes to increase the amount of training data for both normal and abnormal trajectories. With the increased amount of training data, the conventional abnormal trajectory classifier is able to achieve better prediction accuracy without falling into the over-fitting problem caused by complex learning models. Finally, the proposed framework (which annotates tracks that enter prohibited areas) and a conventional abnormal trajectory detector (using the data-boosting technique) are integrated to form a united detector. Such a detector deals with different types of anomalous trajectories in a hierarchical order. The experimental results show that all proposed detectors can effectively detect anomalous trajectories in the test phase.

Improved Deep Learning-based Approach for Spatial-Temporal Trajectory Planning via Predictive Modeling of Future Location

  • Zain Ul Abideen;Xiaodong Sun;Chao Sun;Hafiz Shafiq Ur Rehman Khalil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1726-1748
    • /
    • 2024
  • Trajectory planning is vital for autonomous systems like robotics and UAVs, as it determines optimal, safe paths considering physical limitations, environmental factors, and agent interactions. Recent advancements in trajectory planning and future location prediction stem from rapid progress in machine learning and optimization algorithms. In this paper, we proposed a novel framework for Spatial-temporal transformer-based feed-forward neural networks (STTFFNs). From the traffic flow local area point of view, skip-gram model is trained on trajectory data to generate embeddings that capture the high-level features of different trajectories. These embeddings can then be used as input to a transformer-based trajectory planning model, which can generate trajectories for new objects based on the embeddings of similar trajectories in the training data. In the next step, distant regions, we embedded feedforward network is responsible for generating the distant trajectories by taking as input a set of features that represent the object's current state and historical data. One advantage of using feedforward networks for distant trajectory planning is their ability to capture long-term dependencies in the data. In the final step of forecasting for future locations, the encoder and decoder are crucial parts of the proposed technique. Spatial destinations are encoded utilizing location-based social networks(LBSN) based on visiting semantic locations. The model has been specially trained to forecast future locations using precise longitude and latitude values. Following rigorous testing on two real-world datasets, Porto and Manhattan, it was discovered that the model outperformed a prediction accuracy of 8.7% previous state-of-the-art methods.

Hand Reaching Movement Acquired through Reinforcement Learning

  • Shibata, Katsunari;Sugisaka, Masanori;Ito, Koji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.474-474
    • /
    • 2000
  • This paper shows that a system with two-link arm can obtain hand reaching movement to a target object projected on a visual sensor by reinforcement learning using a layered neural network. The reinforcement signal, which is an only signal from the environment, is given to the system only when the hand reaches the target object. The neural network computes two joint torques from visual sensory signals, joint angles, and joint angular velocities considering the urn dynamics. It is known that the trajectory of the voluntary movement o( human hand reaching is almost straight, and the hand velocity changes like bell-shape. Although there are some exceptions, the properties of the trajectories obtained by the reinforcement learning are somewhat similar to the experimental result of the human hand reaching movement.

  • PDF

PID Type Iterative Learning Control with Optimal Gains

  • Madady, Ali
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.194-203
    • /
    • 2008
  • Iterative learning control (ILC) is a simple and effective method for the control of systems that perform the same task repetitively. ILC algorithm uses the repetitiveness of the task to track the desired trajectory. In this paper, we propose a PID (proportional plus integral and derivative) type ILC update law for control discrete-time single input single-output (SISO) linear time-invariant (LTI) systems, performing repetitive tasks. In this approach, the input of controlled system in current cycle is modified by applying the PID strategy on the error achieved between the system output and the desired trajectory in a last previous iteration. The convergence of the presented scheme is analyzed and its convergence condition is obtained in terms of the PID coefficients. An optimal design method is proposed to determine the PID coefficients. It is also shown that under some given conditions, this optimal iterative learning controller can guarantee the monotonic convergence. An illustrative example is given to demonstrate the effectiveness of the proposed technique.

Dynamic control of mobile robots using a robust.adaptive learning control method (강인.적응학습제어 방식에 의한 이동로봇의 동력학 제어)

  • Nam, Jae-Ho;Baek, Seung-Min;Guk, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 1998
  • In this paper, a robust.adaptive learning control scheme is presented for precise trajectory tracking of rigid mobile robots. In the proposed controller, a set of desired trajectories is defined and used in constructing the control input and learning rules which constitute the main part of the proposed controller. Stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, etc., are shown thorugh experiments and computer simulations.

  • PDF

A Study on ZMP Improvement of Biped Walking Robot Using Neural Network and Tilting (신경회로망과 틸팅을 이용한 이족 보행로봇의 ZMP 개선 연구)

  • Kim, Byoung-Soo;Nam, Kyu-Min;Lee, Soon-Geul
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.4
    • /
    • pp.301-307
    • /
    • 2011
  • Based on the stability criteria of ZMP (Zero Moment Point), this paper proposes an adjusting algorithm that modifies walking trajectory of a bipedal robot for stable walking by analyzing ZMP trajectory of it. In order to maintain walking balance of the bipedal robot, ZMP should be located within a supporting polygon that is determined by the foot supporting area with stability margin. Initially tilting imposed to the trajectory of the upper body is proposed to transfer ZMP of the given walking trajectory into the stable region for the minimum stability. A neural network method is also proposed for the stable walking trajectory of the biped robot. It uses backpropagation learning with angles and angular velocities of all joints with tilting to get the improved walking trajectory. By applying the optimized walking trajectory that is obtained with the neural network model, the ZMP trajectory of the bipedal robot is certainly located within a stable area of the supporting polygon. Experimental results show that the optimally learned trajectory with neural network gives more stability even though the tilting of the pelvic joint has a great role for walking stability.

Iterative Learning Control with Feedback Using Fourier Series with Application to Robot Trajectory Tracking (퓨리에 급수 근사를 이용한 궤환을 가진 반복 학습제어와 로보트 궤적 추종에의 응용)

  • ;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.4
    • /
    • pp.67-75
    • /
    • 1993
  • The Fourier series are employed to approximate the input/output(I/O) characteristics of a dynamic system and, based on the approximation, a new learing control algorithm is proposed in order to find iteratively the control input for tracking a desired trajectory. The use of the Fourier approximation of I/O renders at least a couple of useful consequences: the frequency characteristics of the system can be used in the controller design and the reconstruction of the system states is not required. The convergence condition of the proposed algorithm is provided and the existence and uniqueness of the desired control input is discussed. The effectiveness of the proposed algorithm is illustrated by computer simulation for a robot trajectory tracking. It is shown that, by adding feedback term in learning control algorithm, robustness and convergence speed can be improved.

  • PDF

Labeling Big Spatial Data: A Case Study of New York Taxi Limousine Dataset

  • AlBatati, Fawaz;Alarabi, Louai
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.207-212
    • /
    • 2021
  • Clustering Unlabeled Spatial-datasets to convert them to Labeled Spatial-datasets is a challenging task specially for geographical information systems. In this research study we investigated the NYC Taxi Limousine Commission dataset and discover that all of the spatial-temporal trajectory are unlabeled Spatial-datasets, which is in this case it is not suitable for any data mining tasks, such as classification and regression. Therefore, it is necessary to convert unlabeled Spatial-datasets into labeled Spatial-datasets. In this research study we are going to use the Clustering Technique to do this task for all the Trajectory datasets. A key difficulty for applying machine learning classification algorithms for many applications is that they require a lot of labeled datasets. Labeling a Big-data in many cases is a costly process. In this paper, we show the effectiveness of utilizing a Clustering Technique for labeling spatial data that leads to a high-accuracy classifier.