Browse > Article
http://dx.doi.org/10.7468/jksmed.2021.24.2.83

The Pacing of Volume Lessons in American Elementary Textbooks Compared to Students' Development in Volume Measurement  

Hong, Dae S. (University of Iowa)
Choi, Kyong Mi (University of Virginia)
Hwang, Jihyun (Kangwon National University)
Runnalls, Cristina (California State Polytechnic University)
Publication Information
Research in Mathematical Education / v.24, no.2, 2021 , pp. 83-109 More about this Journal
Abstract
In the early stage of lesson enactment process, teachers use textbooks and other resources to select tasks and activities. It follows that discrepancies between textbooks and research-recommended pathways for learning may lead to concerns or issues with pacing in the classroom. To explore this idea further, this study examined the alignment between three popular standards-aligned textbooks series and volume learning trajectories. The results indicated that the standards-based textbooks examined may lack attention to important topics in the pacing of volume instruction, and suggest the need to inform both pre-service and in-service teachers about the gap between textbook lessons and volume learning trajectories so that they will be able to reflect students' thinking in volume learning trajectory to their lessons.
Keywords
Textbooks; alignment; learning trajectory; volume;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Smith, J. P., Males, L. M., & Gonulates, F. (2016). Conceptual limitations in curricular presentations of area measurement: One nation's challenges. Mathematical Thinking and Learning, 18(4), 239-270. doi:10.1080/10986065.2016.1219930   DOI
2 Son, J.-W., & Kim, O.-K. (2015). Teachers' selection and enactment of mathematical problems from textbooks. Mathematics Education Research Journal, 27(4), 491-518. doi:10.1007/s13394-015-0148-9   DOI
3 Polikoff, M. S., Porter, A. C., & Smithson, J. (2011). How well aligned are state assessments of student achievement with state content standards? American Educational Research Journal, 48(4), 965-995. doi:10.3102/0002831211410684   DOI
4 Hong, D. S., & Runnalls, C. (2021). Is it the width, the height, or the length?: pre-service teachers' responses to a volume task. International Journal of Mathematical Education in Science and Technology, 1-14. doi:10.1080/0020739X.2020.1772389   DOI
5 Battista, M., & Clements, D. (1996). Students' understanding of three-dimensional rectangular arrays of cubes. Journal for Research in Mathematics Education, 27(3), 258-292. doi:10.2307/749365   DOI
6 Clements, D. (2007). Curriculum research: Toward a framework for "research-based curricula". Journal for Research in Mathematics Education, 38(1), 35-70. doi:10.2307/30034927   DOI
7 Alkhrausi, H. (2012). Generalizability theory: An analysis of variance approach to measurement problems in educational assessment. Journal of Studies in Education, 2(1), 184-196.
8 Battista, M. (1999). Fifth graders' enumeration of cubes in 3D arrays: Conceptual progress in an inquiry-based classroom. Journal for Research in Mathematics Education, 30(4), 417-448. doi:10.2307/749708   DOI
9 Cai, J., & Howson, G. (2013). Toward an international mathematics curriculum. In M. A. Clements, A. J. Bishop, C. Keitel, J. Kilpatrick, & F. K. S. Leung (Eds.), Third international handbook of mathematics education (pp. 949-974). New York, NY: Springer New York.
10 National Council of Teachers of Mathematics [NCTM]. (2014). Principles to actions : ensuring mathematical success for all: Reston, VA : NCTM, National Council of Teachers of Mathematics, [2014] ©2014.
11 Newton, J., & Kasten, S. (2013). Two models for evaluating alignment of state standards and assessments: Competing or complementary perspectives? Journal for Research in Mathematics Education, 44(3), 550-580. doi:10.5951/jresematheduc.44.3.0550   DOI
12 Liu, X., Zhang, B., Liang, L. L., Fulmer, G., Kim, B., & Yuan, H. (2009). Alignment between the physics content standard and the standardized test: A comparison among the United States-New York State, Singapore, and China-Jiangsu. Science Education, 93(5), 777-797. doi:10.1002/sce.20330   DOI
13 Martone, A., & Sireci, S. G. (2009). Evaluating alignment between curriculum, assessment, and instruction. Review of Educational Research, 79(4), 1332-1361. doi:10.3102/0034654309341375   DOI
14 Stein, M. K., Remillard, J. T., & Smith, M. S. (2007). How curriculum influences student learning. In F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 319 - 369). Greenwich, CT: Information Age Publishing.
15 Otten, S., Gilbertson, N. J., Males, L. M., & Clark, D. L. (2014). The mathematical nature of Reasoning-and-proving opportunities in geometry textbooks. Mathematical Thinking and Learning, 16(1), 51-79. doi:10.1080/10986065.2014.857802   DOI
16 Remillard, J. T., Harris, B., & Agodini, R. (2014). The influence of curriculum material design on opportunities for student learning. ZDM, 46(5), 735-749. doi:10.1007/s11858-014-0585-z   DOI
17 National Governors Association Center for Best Practices, & Council of Chief State School Officers. (2010). Common Core State Standards. Washington D.C.: National Governors Association Center for Best Practices, Council of Chief State School Officers.
18 Sztajn, P., Confrey, J., Wilson, P. H., & Edgington, C. (2012). Learning trajectory based instruction. Educational Researcher, 41(5), 147-156. doi:10.3102/0013189X12442801   DOI
19 Vasilyeva, M., Ganley, C. M., Casey, B. M., Dulaney, A., Tillinger, M., & Anderson, K. (2013). How children determine the size of 3d structures: Investigating factors influencing strategy choice. Cognition and Instruction, 31(1), 29-61. doi:10.1080/07370008.2012.742086   DOI
20 Clements, D., & Sarama, J. (2004). Learning trajectories in mathematics education. Mathematical Thinking and Learning, 6(2), 81-89. doi:10.1207/s15327833mtl0602_1   DOI
21 Curry, M., Mitchelmore, M., & Outhred, L. (2006). Development of children's understanding of length, area, and volume measurement principles. Paper presented at the the Thirtieth Annual Meeting of the International Group for the Psychology of Mathematics Education, Prague, Czech Republic.
22 Floden, R. (2002). The measurement of opportunity to learn. In A. Porter & A. Gamoran (Eds.), Methodological advances in cross-national surveys of educational assessment (pp. 231-266). Washington, DC: National Academy Press.
23 Hong, D. S., & Choi, K. M. (2018). A comparative analysis of linear functions in Korean and American standards-based secondary textbooks. International Journal of Mathematical Education in Science and Technology, 49(7), 1025-1051. doi:10.1080/0020739X.2018.1440327   DOI
24 Hong, D. S., Choi, K. M., Runnalls, C., & Hwang, J. (2018). Do textbooks address known learning challenges in area measurement? A comparative analysis. Mathematics Education Research Journal, 30(3), 325-354. doi:10.1007/s13394-018-0238-6   DOI
25 Porter, A., McMaken, J., Hwang, J., & Yang, R. (2011). Common Core Standards. Educational Researcher, 40(3), 103-116. doi:10.3102/0013189X11405038   DOI
26 Hong, D. S., & Runnalls, C. (2020). Examining preservice teachers' responses to area conservation tasks. School Science and Mathematics, 120(5), 262-272. doi:10.1111/ssm.12409   DOI
27 Li, Y. (2000). A comparison of problems that follow selected content presentations in American and Chinese mathematics textbooks. Journal for Research in Mathematics Education, 31(2), 234-241. doi:10.2307/749754   DOI
28 Dossey, J., Soucy McCrone, S., & Halvorsen, K. (2016). Mathematics education in the United States 2016: A capsule summary fact book. Retrieved from Reston, VA: https://www.nctm.org/Store/Products/Mathematics-Education-in-the-United-States-2016--ACapsule-Summary-Fact-Book-(POD)/
29 Daro, P., Mosher, F. A., & Corcoran, T. (2011). Learning trajectories in mathematics: A foundation for standards, curriculum, assessment, and instruction. Retrieved from Philadelphia, PA: Consortium for Policy Research in Education.: https://www.cpre.org/sites/default/files/researchreport/1220_learningtrajectoriesinmathcciireport.pdf
30 Liu, X. (2009). Competence and opportunity to learn. In X. Liu (Ed.), Linking competence to opportunities to learn: Models of competence and data mining (pp. 5-11). Dordrecht: Springer Netherlands.
31 Confrey, J. (2012). Articulating a learning sciences foundation for learning trajectories in the CCSSMM. Paper presented at the the Thirty-Fourth Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Western Michigan University, Kalamazoo, MI.
32 Valverde, G., Bianchi, L. J., Wolfe, R. G., Schmidt, W. H., & Houang, R. T. (2002). According to the book: Using TIMSS to investigate the translation of policy into practice through the world of textbooks. Dordrecht, Netherlands: Kluwer.
33 Hong, D. S., Choi, K. M., Runnalls, C., & Hwang, J. (2019). How well aligned are common core textbooks to students' development in area measurement? School Science and Mathematics, 119(5), 240-254. doi:10.1111/ssm.12336   DOI
34 Wilson, P. H., Sztajn, P., Edgington, C., & Myers, M. (2015). Teachers' uses of a learning trajectory in student-centered instructional practices. Journal of Teacher Education, 66(3), 227-244. doi:10.1177/0022487115574104   DOI
35 Battista, M. (2004). Applying cognition-based assessment to elementary school students' development of understanding of area and volume measurement. Mathematical Thinking and Learning, 6(2), 185-204. doi:10.1207/s15327833mtl0602_6   DOI
36 Clements, D., Sarama, J., Spitler, M., Lange, A., & Wolfe, C. (2011). Mathematics learned by young children in an intervention based on learning trajectories: A Large-Scale Cluster Randomized Trial. Journal for Research in Mathematics Education, 42(2), 127-166. Retrieved from http://www.jstor.org/stable/10.5951/jresematheduc.42.2.0127   DOI
37 Liu, X., & Fulmer, G. (2008). Alignment between the science curriculum and assessment in selected NY State Regents Exams. Journal of Science Education and Technology, 17(4), 373-383. doi:10.1007/s10956-008-9107-5   DOI
38 Ding, M. (2016). Opportunities to learn: Inverse relations in U.S. and Chinese textbooks. Mathematical Thinking and Learning, 18(1), 45-68. doi:10.1080/10986065.2016.1107819   DOI
39 Hong, D. S., & Choi, K. M. (2014). A comparison of Korean and American secondary school textbooks: The case of quadratic equations. Educational Studies in Mathematics, 85(2), 241-263. doi:10.1007/s10649-013-9512-4   DOI
40 Lehrer, R. (2003). Developing understanding of measurement. In J. Kilpatrick, W. G. Martin, & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 179-192). Reston, VA: National Council of Teachers of Mathematics.
41 National Research Council. (2004). On evaluating curricular effectiveness: Judging the quality of K-12 mathematics evaluations. Washington, DC: The National Academies Press.
42 Polikoff, M. S. (2015). How well aligned are textbooks to the Common Core Standards in Mathematics? American Educational Research Journal, 52(6), 1185-1211. doi:10.3102/0002831215584435   DOI
43 Remillard, J. T. (2005). Examining key concepts in research on teachers' use of mathematics curricula. Review of Educational Research, 75(2), 211-246. doi:10.3102/00346543075002211   DOI
44 Roth McDuffie, A., Choppin, J., Drake, C., Davis, J. D., & Brown, J. (2017). Middle school teachers' differing perceptions and use of curriculum materials and the common core. Journal of Mathematics Teacher Education. doi:10.1007/s10857-017-9368-0   DOI
45 Mullis, I. V. S., Martin, M. O., Foy, P., & Arora, A. (2012). The TIMSS 2011 International Results in Mathematics: Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
46 Sahm, C. (2015). Curriculum counts: NYC public schools and the Common Core. Civic Report. Retrieved from New York, NY: https://www.manhattan-institute.org/html/curriculum-counts-nycpublic-schools-and-common-core-6360.html.
47 Smith, J. P., Males, L. M., Dietiker, L. C., Lee, K., & Mosier, A. (2013). Curricular treatments of length measurement in the United States: Do they address known learning challenges? Cognition and Instruction, 31(4), 388-433. doi:10.1080/07370008.2013.828728   DOI
48 Son, J.-W., & Kim, O.-K. (2016). Curriculum enactment patterns and associated factors from teachers' perspectives. Mathematics Education Research Journal, 28(4), 585-614. doi:10.1007/s13394-016-0181-3   DOI
49 Runnalls, C., & Hong, D. S. (2019b). "Well, they understand the concept of area": Pre-service teachers' responses to student area misconceptions. Mathematics Education Research Journal. doi:10.1007/s13394-019-00274-1   DOI
50 Sarama, J., & Clements, D. (2009). Early childhood mathematics education research: Learning trajectories for young children. New York: Routledge.
51 Simon, M. A. (1995). Reconstructing mathematics pedagogy from a constructivist perspective. Journal for Research in Mathematics Education, 26(2), 114-145. doi:10.2307/749205   DOI
52 Remillard, J. T., & Heck, D. J. (2014). Conceptualizing the curriculum enactment process in mathematics education. ZDM, 46(5), 705-718. doi:10.1007/s11858-014-0600-4   DOI
53 Runnalls, C., & Hong, D. S. (2019a). Half the base or half the height?: Exploring a student's justification of ½×base×height. International Journal of Mathematical Education in Science and Technology, 1-10. doi:10.1080/0020739X.2019.1576928   DOI