학습자 스스로 학습내용, 학습방법, 학습순서 등을 결정하고 재구조화할 수 있는 학습자 통제 환경에서는 학습자의 특성을 고려한 개별화 학습이 가능하다. 본 연구에서는 웹 기반 교수 학습 과정에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습경로 패턴을 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습경로 패턴을 갖는 학습자들로 그룹화하였다. 이를 기반으로 학습자 개인에게 학습경로, 학습내용. 학습매체, 보조학습콘텐츠, 자료제시유형 등을 다차원적으로 제공하기 위한 다차원 학습경로 패턴 분석 시스템을 설계하고 구현하였다. 개발된 시스템에 대하여 만족도 검사를 실시한 결과 보조학습콘텐츠에 대한 만족도가 "매우 만족" $24.5\%$, "만족" $35.17\%$로 가장 높게 나타났다. 학습자 수준별로는 하위수준의 학습자에 대한 만족도가 "매우 만족" $20.2\%$, "만족" $31.2\%$로 상위수준의 학습자 "매우 만족" $18.4\%$, "만족" $28.54\%$ 보다 높게 나타났다. 개발된 시스템은 드릴-업, 드릴-다운 등의 OLAP 기술을 이용하여 학습자들에게 다양한 각도로 다차원적으로 의미 있는 정보를 제공할 것으로 기대된다.
최근의 웹 기반 교수-학습은 학습자 스스로 학습 내용, 학습 시간 및 학습 순서를 선택하고 조직하는 방향으로 나아가고 있다. 즉 학습자 개개인의 특성(선수 지식, 학습 양식, 흥미/관심)에 맞는 적응적인 교수-학습 환경을 제공하는 방향으로 변화되고 있다. 본 연구에서는 웹 기반 교수-학습 과정에서 중요시되고 있는 학습자 특성 변인 중에서 학습자의 학습경로를 Apriori 알고리즘을 이용하여 분석하고, 유사한 학습경로를 갖는 학습자들로 그룹화 하였다. 이를 기반으로 학습자 개인에게 학습경로, 인터페이스, 상호작용 등을 제공하기 위한 학습경로 개인화 시스템을 설계하고 개발하였다. 개발된 시스템은 학습자의 학습 패턴에 맞는 최적의 학습 환경을 제공해 줄 수 있을 뿐만 아니라 학습자 개개인의 학습효과를 향상시키는데 효과가 있을 것으로 기대된다.
학습 본 연구의 목적은 블랜디드 러닝 환경에서 적용될 학업 성취 수준별 교수 학습 모형을 제안하는 것이다. 블랜디드 러닝 환경에 포함된 변인과 구조를 살펴보기 위해 웹 학습요소와 자기조절학습을 기초로 하여 두 종류의 설문지를 개발하였고, 또한 이를 적용한 반응을 근거로 하여 각 요소 간 위상과 경로를 표현하였다. 본 연구에서는 고등학생 154명을 실험 대상으로 2주간 사이버 학습을 실시하고 각 학습자의 성취 수준과 설문지 자료를 획득하였다. 또한 상관분석, 전통적 다차원척도법 그리고 중회귀분석을 적용하여 통계적 처리를 통해 각 요소 간 위상과 경로를 규명하고 블랜디드 러닝 모형을 정형화하였다.
It is known that Global Positioning System(GPS) is the most efficient navigation system because it provides precise position information on the all areas of Earth regardless of metrology. Until now, the size of GPS receivers has become smaller and the performance of receivers has become higher. So receivers provide the position information of not only static system but also dynamic system. Usually, users make similar movement trajectory according to their life pattern and it is possible to build up efficient database by collecting only the repeated users' position. Because position information calculated by the receiver is erroneous about 10-30m within 5% error tolerance, the position information is oscillated even on the same area. In this paper, we propose the system that can estimate whether users are out of trajectory or in dangerous situation by soft-computing method.
학습자 주도의 지속적 원격교육 환경을 위하여 학습자의 정확한 학습 패턴을 고려한 올바른 문제 추천 가이드에 대한 필요성이 증대하고 있다. 본 논문에서는 원격교육환경에서 수집되는 학습자의 문제패턴에 대하여 상황별 가중치를 부여하여 해당 데이터를 기반의 개별 학습자의 최적 문제추천 경로를 제시하는 방법으로 블록체인 기반 스마트 컨트랙트 기술을 연구하였다. 본 연구의 성능평가를 위하여 기존 유사 학습 환경과의 학습만족도 및 문제추천가이드의 유용성과 학습자 데이터 처리속도를 분석하였으며 본 연구를 통하여 15% 이상 학습 만족도 향상과 기존 학습 환경 대비 20% 이상의 학습데이터 처리속도향상을 확인하였다.
산업용 무선 센서 네트워크는 여러 산업 분야에서의 생산성 향상, 비용 절감 등을 위해 사용되고 있으며, 저지연, 고신뢰 데이터 전송과 같은 성능을 요구한다. 이를 달성하기 위해서, 산업용 무선 센서 네트워크에서는 네트워크 매니저를 통해 네트워크 위상에 대한 그래프 생성 및 자원 할당을 수행하여, 각 장치의 전송 주기 및 경로를 미리 결정한다. 하지만, 이러한 네트워크 관리 방법은 네트워크 위상 변화 시에 그래프 재생성 및 자원 재할당을 수행해야 하므로, 잦은 위상 변화가 발생하는 네트워크 환경에서는 관리비용 증가와 요구성능의 일시적 저하와 같은 현상이 발생하므로 적합하지 않다. 즉, 최근에 다양한 이동 장치를 활용하는 산업용 무선 센서 네트워크에서는 이동 장치로 인한 경로 단절 및 경로 재구성 과정에서 발생하는 지연 전송과 전송 신뢰성 저하를 방지할 수 있는 네트워크 관리 방안에 관한 연구가 필요하다. 본 논문에서는 기계학습을 이용하여 이동 장치의 시간별 위치 및 이동 주기를 분석하고, 이에 기반한 이동 패턴을 추출한다. 또한, 추출된 이동 패턴 정보를 기반으로 예측되는 시간별 네트워크 위상에 대한 그래프 생성 및 자원 할당을 수행하는 네트워크 관리 기능을 제안함으로써, 이동 장치의 이동으로 인한 성능 저하의 문제를 방지한다. 성능평가 결과는 제안 방안이 추출한 이동 패턴과 실제 이동 패턴을 비교하였을 때 약 86%의 예측 정확도를 보이고, 기존의 방법에 비해 높은 전송 성공률 및 낮은 자원 점유율의 성능을 보여준다.
International Journal of Control, Automation, and Systems
/
제6권3호
/
pp.453-459
/
2008
The neural network is currently being used throughout numerous control system fields. However, it is not easy to obtain an input-output pattern when the neural network is used for the system of a single feedback controller and it is difficult to obtain satisfactory performance with when the load changes rapidly or disturbance is applied. To resolve these problems, this paper proposes a new mode to implement a neural network controller by installing a real object for control and an algorithm for this, which can replace the existing method of implementing a neural network controller by utilizing activation function at the output node. The real plant object for controlling of this mode implements a simple neural network controller replacing the activation function and provides the error back propagation path to calculate the error at the output node. As the controller is designed using a simple structure neural network, the input-output pattern problem is solved naturally and real-time learning becomes possible through the general error back propagation algorithm. The new algorithm applied neural network controller gives excellent performance for initial and tracking response and shows a robust performance for rapid load change and disturbance, in which the permissible error surpasses the range border. The effect of the proposed control algorithm was verified in a test that controlled the speed of a motor equipped with a high speed computing capable DSP on which the proposed algorithm was loaded.
회로가 복잡해지고, 고속화되면서 회로의 동작에 대한 검사 뿐 아니라, 회로가 원하는 시간 내에 동작함을 보장하는 지연 검사의 중요성이 점점 커지고 있다. 본 논문에서는 주사환경을 사용하는 순차회로에서의 경로 지연 고장을 위한 테스트 패턴 생성 과정을 효율적으로 수행할 수 있도록 빠른 시간에 간접 유추를 수행할 수 있는 알고리즘을 제안한다. 구조적으로 발생 가능한 정적 학습 과정은 테스트 패턴 생성 과정 중의 선행 처리 단계에서 각각의 게이트에 정적 학습이 발생할 수 있는 경우를 분석하여 그 정보를 각각의 게이트에 대해 저장하고 있다가 알고리즘을 이용한 테스트 패턴 생성 과정 중 조건에 만족하는 경우에 유추될 수 있는 값을 바로 할당하게 된다. 본 논문에서는 이를 지연고장 검출에 맞도록 수정하여 이용하였다. 회로 내에 몇몇 주입력에서 나온 신호선을 모두 포괄하는 분할지점이 존재하면, 이 지점을 지나는 경로들 중에 그 이전, 혹은 이후의 경로가 동일한 경로들은 분할지점에 의해 분할된 입력의 부분들이 같은 입력값을 필요로 함을 예상할 쑤 있다. 본 논문에서는 경로 지연 고장 검출에서 유용하게 사용될 수 있는 이러한 회로분할을 사용하여 보다 효율적으로 테스트 입력을 생성하였다. 마지막으로, 이 두 가지 알고리즘을 적용한 효율적인 경로 지연 고장 테스트 입력 생성기를 개발하였으며, 알고리즘의 효용성을 실험을 통하여 입증하였다.
본 연구는 국내 유일의 상업용 위성을 생산, 수출하는 기업인 (주)쎄트렉아이의 사례를 살펴보았다. 위성산업의 기술학습과정과 기술능력의 한계를 극복하고 기술능력의 축적에 이르기까지의 경로와 패턴을 연구하였다. 사례기업의 연구결과, 기술혁신과정과 영향요인을 도출할 수 있었다. 첫째, 위성산업의 기술학습은 모방에 의한 기술획득, 소화, 개선의 과정으로 축적되며 기술능력으로 구체화된다. 둘째, 위성산업의 축적된 기술능력은 기술혁신에 영향을 준다. 셋째, 최고경영자팀(TMT)은 기술학습에 영향을 주며, 기술능력 향상에도 영향을 미친다. 넷째, TMT는 기술능력이 기술혁신성과로 나타나도록 영향을 미친다. 마지막으로 중소벤처기업이 이루어낸 기술혁신은 기술능력과 기술학습의 원천이 되는 것으로 나타났다. 본 연구의 시사점은 다음과 같다. 기업의 지속적인 기술혁신을 위해서는 TMT이 역할이 매우 중요하며, 기술적 측면, 생산적 측면에서 긍정적인 영향을 미친다는 것을 확인 하였다. 또한 기술기반의 기업이 지속적이고 안정적인 성장을 위해서는 기술학습을 통한 경쟁력을 확보해야하며, 이는 기술기반의 기업이면 기술혁신의 바탕이 기술학습에서 시작된다는 것을 시사한다.
Neural network is used in many fields of control systems, but input-output patterns of a control system are not easy to be obtained and by using as single feedback neural network controller. And also it is difficult to get a satisfied performance when the changes of rapid load and disturbance are applied. To resolve those problems, this paper proposes a new algorithm which is the neural network controller. The new algorithm uses the neural network instead of activation function to control object at the output node. Therefore, control object is composed of neural network controller unifying activation function, and it supplies the error back propagation path to calculate the error at the output node. As a result, the input-output pattern problem of the controller which is resigned by the simple structure of neural network is solved, and real-time learning can be possible in general back propagation algorithm. Application of the new algorithm of neural network controller gives excellent performance for initial and tracking response and it shows the robust performance for rapid load change and disturbance. The proposed control algorithm is implemented on a high speed DSP, TMS320C32, for the speed of 3-phase induction motor. Enhanced performance is shown in the test of the speed control.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.