DOI QR코드

DOI QR Code

Mobility Support Scheme Based on Machine Learning in Industrial Wireless Sensor Network

산업용 무선 센서 네트워크에서의 기계학습 기반 이동성 지원 방안

  • Received : 2020.09.16
  • Accepted : 2020.10.22
  • Published : 2020.11.30

Abstract

Industrial Wireless Sensor Networks (IWSNs) is exploited to achieve various objectives such as improving productivity and reducing cost in the diversity of industrial application, and it has requirements such as low-delay and high reliability packet transmission. To accomplish the requirement, the network manager performs graph construction and resource allocation about network topology, and determines the transmission cycle and path of each node in advance. However, this network management scheme cannot treat mobile devices that cause continuous topology changes because graph reconstruction and resource reallocation should be performed as network topology changes. That is, despite the growing need of mobile devices in many industries, existing scheme cannot adequately respond to path failure caused by movement of mobile device and packet loss in the process of path recovery. To solve this problem, a network management scheme is required to prevent packet loss caused by mobile devices. Thus, we analyse the location and movement cycle of mobile devices over time using machine learning for predicting the mobility pattern. In the proposed scheme, the network manager could prevent the problems caused by mobile devices through performing graph construction and resource allocation for the predicted network topology based on the movement pattern. Performance evaluation results show a prediction rate of about 86% compared with actual movement pattern, and a higher packet delivery ratio and a lower resource share compared to existing scheme.

산업용 무선 센서 네트워크는 여러 산업 분야에서의 생산성 향상, 비용 절감 등을 위해 사용되고 있으며, 저지연, 고신뢰 데이터 전송과 같은 성능을 요구한다. 이를 달성하기 위해서, 산업용 무선 센서 네트워크에서는 네트워크 매니저를 통해 네트워크 위상에 대한 그래프 생성 및 자원 할당을 수행하여, 각 장치의 전송 주기 및 경로를 미리 결정한다. 하지만, 이러한 네트워크 관리 방법은 네트워크 위상 변화 시에 그래프 재생성 및 자원 재할당을 수행해야 하므로, 잦은 위상 변화가 발생하는 네트워크 환경에서는 관리비용 증가와 요구성능의 일시적 저하와 같은 현상이 발생하므로 적합하지 않다. 즉, 최근에 다양한 이동 장치를 활용하는 산업용 무선 센서 네트워크에서는 이동 장치로 인한 경로 단절 및 경로 재구성 과정에서 발생하는 지연 전송과 전송 신뢰성 저하를 방지할 수 있는 네트워크 관리 방안에 관한 연구가 필요하다. 본 논문에서는 기계학습을 이용하여 이동 장치의 시간별 위치 및 이동 주기를 분석하고, 이에 기반한 이동 패턴을 추출한다. 또한, 추출된 이동 패턴 정보를 기반으로 예측되는 시간별 네트워크 위상에 대한 그래프 생성 및 자원 할당을 수행하는 네트워크 관리 기능을 제안함으로써, 이동 장치의 이동으로 인한 성능 저하의 문제를 방지한다. 성능평가 결과는 제안 방안이 추출한 이동 패턴과 실제 이동 패턴을 비교하였을 때 약 86%의 예측 정확도를 보이고, 기존의 방법에 비해 높은 전송 성공률 및 낮은 자원 점유율의 성능을 보여준다.

Keywords

References

  1. I. Iec, "62591: Industrial Communication Networks-wireless Communication Network and Communication Profileswirelesshart," IEC: Geneva, Switzerland, 2009.
  2. X. Luo, J. Liu, D. Zhang, and X. Chang, "A Large-scale Web QoS Prediction Scheme for the Industrial Internet of Things Based on a Kernel Machine Learning Algorithm," Computer Network, Vol. 101, No.4, pp. 81-89, Jun. 2016. https://doi.org/10.1016/j.comnet.2016.01.004
  3. Copyright Deutsche Bank Research, "Industry 4.0: Huge Potential for Value Creation Waiting to be Tapped," Available: https://www.i40.de/wp/wp-content/uploads/2015/04/Industry-4.0-Huge-potential-for-value-creation-waiting-tobe-tapped.pdf, Accessed on 2014.
  4. G. P. Sullivan, R. Pugh, A. P. Melendez, and W. D. Hunt, "Operations & Maintenance Best Practices: A Guide to Achieving Operational Efficiency, Release 3.0," Pacific Northwest National Laboratory, U.S. Department of Energy, Aug. 2010.
  5. H. Hashemian, "Wireless Sensors for Predictive Maintenance of Rotating Equipment in Research Reactors," Annals of Nuclear Energy, Vol.38, Iss.2-3, pp.665-680, 2011. https://doi.org/10.1016/j.anucene.2010.09.012
  6. K. S. Low, W. N. N. Win, and M. J. Er, "Wireless Sensor Networks for Industrial Environments," International Conference on Computational Intelligence for Modelling, Control and Automation and International Conference on Intelligent Agents, Web Technologies and Internet Commerce (CIMCA-IAWTIC'06), Vol.2, pp.271-276, Nov. 2005.
  7. S. Oh and K. Jung., "Multipath Routing for Reliable Realtime Data Dissemination in Industrial Wireless Sensor Network," Journal of Korean Institute of Communications and Information Sciences, Vol.43, No.10, pp.1608-1618, Oct. 2018. https://doi.org/10.7840/kics.2018.43.10.1608
  8. Hart Specification [Online]. Available: https://fieldcommgroup.org/hart-specifications/
  9. I. Iec, "62601: Industrial Communication Network - Fieldbus Specifications - Wia-pa Communication Network and Communication Profile," IEC: Geneva, Switzerland, 2008.
  10. K. N. Qureshi and A. H. Abdullah, "Adaptation of Wireless Sensor Network in Industries and their Architecture, Standards and Applications," World Applied Sciences Journal, Vol.30, No.10, pp.1218-1223, 2014.
  11. I. Iec, "62591: Industrial Communication Networks-wireless Communication Network and Communication Profileswirelesshart," IEC: Geneva, Switzerland, 2009.
  12. S. Montero, J. Gozalvez, M. Sepulcre, and G. Prieto, "Impact of Mobility on the Management and Performance of Wirelesshart Industrial Communications," Proceedings of IEEE Ineternational Conference on Emerging Technologies Factory Automation (ETFA'12), pp.1-4, Sep. 2012.
  13. L. Zheng, "Industrial Wireless Sensor Networks and Standardizations: The Trend of Wireless Sensor Networks for Process Automation," Proceedings of SICE Annual Conference, pp.1187-1190, 2010.
  14. S. Kim, K. Jung, H. Cho, C. Kim, T. Yang, and S. Kim, "Routing Graph Construction Scheme to Prevent Path Failure due to Mobile Devices in Industrial Wireless Sensor Networks," Journal of Korean Institute of Communications and Information Sciences, Vol.44, No.3, pp.528-539, Mar. 2019. https://doi.org/10.7840/kics.2019.44.3.528
  15. D. P. Kumar and T. Amgoth, "Machine Learning Algorithms for Wireless Sensor Networks: A Survey," Information Fusion, Vol.49, pp.1-25, Sep. 2018.
  16. W. Zhao, S. Su, and F. Shao, "Improved DV-hop Algorithm using Locally Weighted Linear Regression in Anisotropic Wireless Sensor Networks," Wireless Personal Communication, Vol.98, No.4, pp.3335-3353, Feb. 2018. https://doi.org/10.1007/s11277-017-5017-2
  17. S. Han, X. Zhu, A. K. Mok, D. Chen, and M. Nixon, "Reliable and Real-time Communication in Industrial Wireless Mesh Networks," IEEE Real-Time and Embedded Technology and Applications Symposium, pp.3-12, Apr. 2011.
  18. NS-3, "Network Simulator-3.26," http://www.nsnam.org/,accessed Jan. 22. 2012.