• Title/Summary/Keyword: Learning Machine System

Search Result 1,789, Processing Time 0.026 seconds

Underwater Acoustic Research Trends with Machine Learning: Active SONAR Applications

  • Yang, Haesang;Byun, Sung-Hoon;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.277-284
    • /
    • 2020
  • Underwater acoustics, which is the study of phenomena related to sound waves in water, has been applied mainly in research on the use of sound navigation and range (SONAR) systems for communication, target detection, investigation of marine resources and environments, and noise measurement and analysis. The main objective of underwater acoustic remote sensing is to obtain information on a target object indirectly by using acoustic data. Presently, various types of machine learning techniques are being widely used to extract information from acoustic data. The machine learning techniques typically used in underwater acoustics and their applications in passive SONAR systems were reviewed in the first two parts of this work (Yang et al., 2020a; Yang et al., 2020b). As a follow-up, this paper reviews machine learning applications in SONAR signal processing with a focus on active target detection and classification.

Small Cell Communication Analysis based on Machine Learning in 5G Mobile Communication

  • Kim, Yoon-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.14 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • Due to the recent increase in the mobile streaming market, mobile traffic is increasing exponentially. IMT-2020, named as the next generation mobile communication standard by ITU, is called the 5th generation mobile communication (5G), and is a technology that satisfies the data traffic capacity, low latency, high energy efficiency, and economic efficiency compared to the existing LTE (Long Term Evolution) system. 5G implements this technology by utilizing a high frequency band, but there is a problem of path loss due to the use of a high frequency band, which is greatly affected by system performance. In this paper, small cell technology was presented as a solution to the high frequency utilization of 5G mobile communication system, and furthermore, the system performance was improved by applying machine learning technology to macro communication and small cell communication method decision. It was found that the system performance was improved due to the technical application and the application of machine learning techniques.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment

  • Su-Yeon Kim;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.161-168
    • /
    • 2024
  • As the size of big data models grows, distributed training is emerging as an essential element for large-scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a centralized system. And Through communication between agents, resource management and learning processes can be coordinated, enabling efficient management of distributed data and resources. This approach enhances the scalability and stability of distributed machine learning systems while providing flexibility to be applied in various learning environments.

Machine learning approaches for wind speed forecasting using long-term monitoring data: a comparative study

  • Ye, X.W.;Ding, Y.;Wan, H.P.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.733-744
    • /
    • 2019
  • Wind speed forecasting is critical for a variety of engineering tasks, such as wind energy harvesting, scheduling of a wind power system, and dynamic control of structures (e.g., wind turbine, bridge, and building). Wind speed, which has characteristics of random, nonlinear and uncertainty, is difficult to forecast. Nowadays, machine learning approaches (generalized regression neural network (GRNN), back propagation neural network (BPNN), and extreme learning machine (ELM)) are widely used for wind speed forecasting. In this study, two schemes are proposed to improve the forecasting performance of machine learning approaches. One is that optimization algorithms, i.e., cross validation (CV), genetic algorithm (GA), and particle swarm optimization (PSO), are used to automatically find the optimal model parameters. The other is that the combination of different machine learning methods is proposed by finite mixture (FM) method. Specifically, CV-GRNN, GA-BPNN, PSO-ELM belong to optimization algorithm-assisted machine learning approaches, and FM is a hybrid machine learning approach consisting of GRNN, BPNN, and ELM. The effectiveness of these machine learning methods in wind speed forecasting are fully investigated by one-year field monitoring data, and their performance is comprehensively compared.

A Case Study of Rapid AI Service Deployment - Iris Classification System

  • Yonghee LEE
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.29-34
    • /
    • 2023
  • The flow from developing a machine learning model to deploying it in a production environment suffers challenges. Efficient and reliable deployment is critical for realizing the true value of machine learning models. Bridging this gap between development and publication has become a pivotal concern in the machine learning community. FastAPI, a modern and fast web framework for building APIs with Python, has gained substantial popularity for its speed, ease of use, and asynchronous capabilities. This paper focused on leveraging FastAPI for deploying machine learning models, addressing the potentials associated with integration, scalability, and performance in a production setting. In this work, we explored the seamless integration of machine learning models into FastAPI applications, enabling real-time predictions and showing a possibility of scaling up for a more diverse range of use cases. We discussed the intricacies of integrating popular machine learning frameworks with FastAPI, ensuring smooth interactions between data processing, model inference, and API responses. This study focused on elucidating the integration of machine learning models into production environments using FastAPI, exploring its capabilities, features, and best practices. We delved into the potential of FastAPI in providing a robust and efficient solution for deploying machine learning systems, handling real-time predictions, managing input/output data, and ensuring optimal performance and reliability.

Underwater Acoustic Research Trends with Machine Learning: Passive SONAR Applications

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.3
    • /
    • pp.227-236
    • /
    • 2020
  • Underwater acoustics, which is the domain that addresses phenomena related to the generation, propagation, and reception of sound waves in water, has been applied mainly in the research on the use of sound navigation and ranging (SONAR) systems for underwater communication, target detection, investigation of marine resources and environment mapping, and measurement and analysis of sound sources in water. The main objective of remote sensing based on underwater acoustics is to indirectly acquire information on underwater targets of interest using acoustic data. Meanwhile, highly advanced data-driven machine-learning techniques are being used in various ways in the processes of acquiring information from acoustic data. The related theoretical background is introduced in the first part of this paper (Yang et al., 2020). This paper reviews machine-learning applications in passive SONAR signal-processing tasks including target detection/identification and localization.

A Study on the Insider Behavior Analysis Using Machine Learning for Detecting Information Leakage (정보 유출 탐지를 위한 머신 러닝 기반 내부자 행위 분석 연구)

  • Kauh, Janghyuk;Lee, Dongho
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, we design and implement PADIL(Prediction And Detection of Information Leakage) system that predicts and detect information leakage behavior of insider by analyzing network traffic and applying a variety of machine learning methods. we defined the five-level information leakage model(Reconnaissance, Scanning, Access and Escalation, Exfiltration, Obfuscation) by referring to the cyber kill-chain model. In order to perform the machine learning for detecting information leakage, PADIL system extracts various features by analyzing the network traffic and extracts the behavioral features by comparing it with the personal profile information and extracts information leakage level features. We tested various machine learning methods and as a result, the DecisionTree algorithm showed excellent performance in information leakage detection and we showed that performance can be further improved by fine feature selection.

Artificial intelligence, machine learning, and deep learning in women's health nursing

  • Jeong, Geum Hee
    • Women's Health Nursing
    • /
    • v.26 no.1
    • /
    • pp.5-9
    • /
    • 2020
  • Artificial intelligence (AI), which includes machine learning and deep learning has been introduced to nursing care in recent years. The present study reviews the following topics: the concepts of AI, machine learning, and deep learning; examples of AI-based nursing research; the necessity of education on AI in nursing schools; and the areas of nursing care where AI is useful. AI refers to an intelligent system consisting not of a human, but a machine. Machine learning refers to computers' ability to learn without being explicitly programmed. Deep learning is a subset of machine learning that uses artificial neural networks consisting of multiple hidden layers. It is suggested that the educational curriculum should include big data, the concept of AI, algorithms and models of machine learning, the model of deep learning, and coding practice. The standard curriculum should be organized by the nursing society. An example of an area of nursing care where AI is useful is prenatal nursing interventions based on pregnant women's nursing records and AI-based prediction of the risk of delivery according to pregnant women's age. Nurses should be able to cope with the rapidly developing environment of nursing care influenced by AI and should understand how to apply AI in their field. It is time for Korean nurses to take steps to become familiar with AI in their research, education, and practice.

Design and Implementation of Machine Learning-based Blockchain DApp System (머신러닝 기반 블록체인 DApp 시스템 설계 및 구현)

  • Lee, Hyung-Woo;Lee, HanSeong
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.4
    • /
    • pp.65-72
    • /
    • 2020
  • In this paper, we developed a web-based DApp system based on a private blockchain by applying machine learning techniques to automatically identify Android malicious apps that are continuously increasing rapidly. The optimal machine learning model that provides 96.2587% accuracy for Android malicious app identification was selected to the authorized experimental data, and automatic identification results for Android malicious apps were recorded/managed in the Hyperledger Fabric blockchain system. In addition, a web-based DApp system was developed so that users who have been granted the proper authority can use the blockchain system. Therefore, it is possible to further improve the security in the Android mobile app usage environment through the development of the machine learning-based Android malicious app identification block chain DApp system presented. In the future, it is expected to be able to develop enhanced security services that combine machine learning and blockchain for general-purpose data.

Face Recognition using Correlation Filters and Support Vector Machine in Machine Learning Approach

  • Long, Hoang;Kwon, Oh-Heum;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.4
    • /
    • pp.528-537
    • /
    • 2021
  • Face recognition has gained significant notice because of its application in many businesses: security, healthcare, and marketing. In this paper, we will present the recognition method using the combination of correlation filters (CF) and Support Vector Machine (SVM). Firstly, we evaluate the performance and compared four different correlation filters: minimum average correlation energy (MACE), maximum average correlation height (MACH), unconstrained minimum average correlation energy (UMACE), and optimal-tradeoff (OT). Secondly, we propose the machine learning approach by using the OT correlation filter for features extraction and SVM for classification. The numerical results on National Cheng Kung University (NCKU) and Pointing'04 face database show that the proposed method OT-SVM gets higher accuracy in face recognition compared to other machine learning methods. Our approach doesn't require graphics card to train the image. As a result, it could run well on a low hardware system like an embedded system.