Acknowledgement
Supported by : National Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China, Central Universities of China
References
- Assareh, E., Behrang, M.A., Assari, M.R. and Ghanbarzadeh, A. (2010), "Application of pso (particle swarm optimization) and ga (genetic algorithm) techniques on demand estimation of oil in iran", Energ., 35(12), 5223-5229. DOI:10.1016/j.energy.2010.07.043.
- Beheshti, Z., and Shamsuddin, S.M.H. (2014), "Capso: centripetal accelerated particle swarm optimization", Inf. Sci., 258, 54-79. DOI: 10.1016/j.ins.2013.08.015.
- Braganeto, U.M. and Dougherty, E.R. (2004), "Is cross-validation valid for small-sample microarray classification?", Bioinform., 20(3), 374-380. DOI: 10.1093/bioinformatics/btg419.
- Chen, K. and Yu, J. (2014), "Short-term wind speed prediction using an unscented kalman filter based state-space support vector regression approach", Appl. Energ., 113, 690-705. DOI:10.1016/j.apenergy.2013.08.025.
- Cheung, K.S., Langevin, A. and Delmaire, H. (1997), "Coupling genetic algorithm with a grid search method to solve mixed integer nonlinear programming problems", Comput. Math. Appli., 34(12), 13-23. DOI: 10.1016/s0898-1221(97)00229-0.
- Cigizoglu, H.K. (2005), "Generalized regression neural network in monthly flow forecasting", Civ. Eng. Environ. Syst., 22(2), 71-81. DOI: 10.1080/10286600500126256.
- Diana, G. and Tommasi, C. (2002), "Cross-validation methods in principal component analysis: a comparison", Stat. Method. Appl., 11(1), 71-82. DOI: 10.1007/bf02511446.
- Ding, S., Su, C. and Yu, J. (2011), "An optimizing bp neural network algorithm based on genetic algorithm", Artif. Intell. Rev., 36(2), 153-162. DOI: 10.1007/s10462-011-9208-z.
- Engelbrecht, A.P. (2006), "Fundamentals of computational swarm intelligence", Wiley, Hoboken, NJ, USA.
- Guo, Z., Wu, J., Lu, H. and Wang, J. (2011), "A case study on a hybrid wind speed forecasting method using BP neural network", Knowledge-Based Syst., 24(7), 1048-1056. DOI:10.1016/j.knosys.2011.04.019.
- Han, F., Yao, H.F. and Ling, Q.H. (2013), "An improved evolutionary extreme learning machine based on particle swarm optimization", Neurocomputing, 116, 87-93. DOI:10.1016/j.neucom.2011.12.062.
- Heimes, F. and van Heuveln, B. (1998), "The normalized radial basis function neural network", P. IEEE. Int. Conf., 2, 1609-1614. DOI: 10.1109/ICSMC.1998.728118.
- Hocaoglu, F.O. and Kurban, M. (2007), "The effect of missing wind speed data on wind power estimation", Int. Conf. Intell. Data Eng. Autom. Lea., 107-114. DOI: 10.1007/978-3-540-77226-2_12.
- Holland, J.H. (1973), "Genetic algorithms and the optimal allocation of trials", Siamj. Comput., 2(2), 88-105. DOI:10.1137/0202009.
- Huang, D.M., He, S.Q., He, X.H. and Zhu, X. (2017), "Prediction of wind loads on high-rise building using a bp neural network combined with pod", J. Wind Eng. Ind. Aerod., 170, 1-17. DOI:10.1016/j.jweia.2017.07.021.
- Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006), "Extreme learning machine: theory and applications", Neurocomputing, 70(1-3), 489-501. DOI: 10.1016/j.neucom.2005.12.126.
- Huang, G.B. and Lei, C. (2007), "Convex incremental extreme learning machine", Neurocomputing, 70(16), 3056-3062. DOI:10.1016/j.neucom.2007.02.009.
- Huang, K., Dai, L. and Huang, S. (2010), "Wind prediction based on improved bp artificial neural network in wind farm", Int. Conf. El. Control Eng., 2548-2551. DOI:10.1109/iCECE.2010.630.
- Jadid, M.N. and Fairbairn, D.R. (1994), "The application of neural network techniques to structural analysis by implementing an adaptive finite-element mesh generation", Artif. Intel. Eng. Des. Anal. Manuf., 8(3), 177-191. DOI:10.1017/S0890060400001979.
- Jiang, P. and Chen, J. (2016), "Displacement prediction of landslide based on generalized regression neural networks with k-fold cross-validation", Neurocomputing, 198(7), 40-47. DOI:10.1016/j.neucom.2015.08.118.
- Kai, C., Qi, L., Yao, L. and Yong, D. (2016), "Robust regularized extreme learning machine for regression using iteratively reweighted least squares", Neurocomputing., 230, 345-358. DOI:10.1016/j.neucom.2016.12.029.
- Kassa, Y., Zhang, J., Zheng, D. and Wei, D. (2016), "A ga-bp hybrid algorithm based ann model for wind power prediction", IEEE. Smart Energ. Grid Eng., 158-163. DOI:10.1109/SEGE.2016.7589518.
- Kennedy, J. and Eberhart, R. (1995), "Particle swarm optimization", P. IEEE. Int. Conf. Neur. Net., 4, 1942-1948. DOI: 10.1109/ICNN.1995.488968.
- Khalid, M. and Savkin, A.V. (2012), "A method for short-term wind power prediction with multiple observation points", IEEE T. Power Syst., 27(2), 579-586. DOI:10.1109/tpwrs.2011.2160295.
- Kumar, G. and Malik, H. (2016), "Generalized regression neural network based wind speed prediction model for western region of india", P. Comput. Sci., 93, 26-32. DOI:10.1016/j.procs.2016.07.177.
- Landberg, L. (1999), "Short-term prediction of the power production from wind farms", J. Wind Eng. Ind. Aerod., 80(1-2), 207-220. DOI: 10.1016/S0167-6105(98)00192-5.
- Li, X., Liu, Y. and Xin, W. (2009), "Wind speed prediction based on genetic neural network", IEEE. Conf. Ind. El. Appl., 2448-2451. DOI: 10.1109/ICIEA.2009.5138642.
- Lei, M., Shiyan, L., Chuanwen, J., Hongling, L. and Yan, Z. (2009), "A review on the forecasting of wind speed and generated power", Renew. Sust. Energ. Rev., 13(4), 915-920. DOI: 10.1016/j.rser.2008.02.002.
- Lee, C.Y. and He, Y.L. (2012), "Wind prediction based on general regression neural network", Int. Conf. Intell. Syst. Des. Eng. Appl., 617-620. DOI: 10.1109/ISdea.2012.520.
- Li, H.Z., Guo, S., Li, C.J. and Sun, J.Q. (2013), "A hybrid annual power load forecasting model based on generalized regression neural network with fruit fly optimization algorithm", Knowledge-Based Syst., 37(2), 378-387. DOI:10.1016/j.knosys.2012.08.015.
- Lazarevska, E. (2016), "Wind speed prediction with extreme learning machine", IEEE. Int. Conf. Intell. Syst., 154-159. DOI:10.1109/IS.2016.7737415.
- Liu, H., Mi, X. and Li, Y. (2018), "An experimental investigation of three new hybrid wind speed forecasting models using multidecomposing strategy and elm algorithm", Renew. Energ., 123,694-705. DOI: doi.org/10.1016/j.renene.2018.02.092.
- Maulik, U. and Bandyopadhyay, S. (2000), "Genetic algorithmbased clustering technique", Pattern Recognit., 33(9), 1455-1465. DOI: 10.1016/S0031-3203(99)00137-5.
- McLachlan, G.J. and Peel, D. (2000), "Finite mixture models", Wiley, New York, N.Y., USA.
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2010), "Monitoring-based fatigue reliability assessment of steel bridges: analytical model and application", J. Eng. Mech., 136(12), 1563-1573. DOI:10.1061/(ASCE)ST.1943-541X.0000250.
- Ni, Y.Q., Ye, X.W. and Ko, J.M. (2012), "Modeling of stress spectrum using long-term monitoring data and finite mixture distributions", J. Eng. Mech., 138(2), 175-183. DOI:10.1061/(ASCE)EM.1943-7889.0000313.
- Ping, J., Zeng, Z., Chen, J. and Huang, T. (2014), "Generalized regression neural networks with k-fold cross-validation for displacement of landslide forecasting", Adv. Neur. Net., 533-541. DOI: 10.1007/978-3-319-12436-0_59.
- Refaeilzadeh, P., Lei, T. and Liu, H. (2016), "Cross-validation", Encyclopedia of Database Sys., 532-538. DOI: 10.1007/978-0-387-39940-9_565.
- Shao, Z., Meng, J.E. and Ning, W. (2016), "An efficient leaveone-out cross-validation-based extreme learning machine (elooelm) with minimal user intervention", IEEE T. Cybern., 46(8), 1939-1951. DOI: 10.1109/TCYB.2015.2458177.
- Specht, D.F. (1991), "A general regression neural network", IEEE. T. Neur. Net., 2(6), 568-576. DOI: 10.1109/72.97934.
- Specht, D.F. (1992), "Enhancements to probabilistic neural networks", Neur. Net., 761-768. DOI:10.1109/IJCNN.1992.287095.
- Specht, D.F. (1993), "The general regression neural networkrediscovered", Neur. Net., 6(7), 1033-1034. DOI:10.1016/S0893-6080(09)80013-0.
- Werbos, P.J. (1974), "Beyond regression: new tools for prediction and analysis in the behavioral sciences" Harvard University, Cambridge, MA.
- Wen, X.L., Huang, J.C., Sheng, D.H. and Wang, F.L. (2010), "Conicity and cylindricity error evaluation using particle swarm optimization" Precis. Eng., 34(2), 338-344. DOI:10.1016/j.precisioneng.2009.08.002.
- Wang, S., Zhang, N., Wu, L. and Wang, Y. (2016), "Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and ga-bp neural network method." Renew. Energ., 94, 629-636. DOI: 10.1016/j.renene.2016.03.103.
- Wang, Y. and Peng, H. (2018), "Underwater acoustic source localization using generalized regression neural network." J. Acoust. Soc. Am., 143(4), 2321-2331. DOI: 10.1121/1.5032311.
- Xu, R.L., Xu, X., Zhu, B. and Chen, M. (2011), "The application of genetic-neural network on wind power prediction" Int. Conf. Inf. Comput. Appl., 379-386. DOI: 10.1007/978-3-642-27452-7_52.
- Yang, D. and Han, F. (2014), "An improved ensemble of extreme learning machine based on attractive and repulsive particle swarm optimization" Int. Conf. Intell. Comput., 213-220. DOI:10.1007/978-3-319-09333-8_23.
- Ye, X.W., Ni, Y.Q., Wong, K.Y. and Ko, J.M. (2012), "Statistical analysis of stress spectra for fatigue life assessment of steel bridges with structural health monitoring data", Eng. Struct., 45, 166-176. DOI: 10.1016/j.engstruct.2012.06.016.
- Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart. Struct. Syst., 12(3), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
- Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015a), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.
- Ye, X.W., Yi, T.H., Dong, C.Z., Liu, T. and Bai, H. (2015b), "Multi-point displacement monitoring of bridges using a visionbased approach", Wind Struct., 20(2), 315-326. https://doi.org/10.12989/was.2015.20.2.315.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Force monitoring of steel cables using vision-based sensing technology:methodology and experimental verification", Smart. Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.
- Ye, X.W., Yi, T.H., Dong, C.Z. and Liu, T. (2016b), "Visionbased structural displacement measurement: system performance evaluation and influence factor analysis", Measurement, 88, 372-384. DOI:10.1016/j.measurement.2016.01.024.
- Ye, X.W., Dong, C.Z. and Liu, T. (2016c), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart. Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
- Ye, X.W., Su, Y.H., Xi, P.S., Chen, B. and Han, J.P. (2016d), "Statistical analysis and probabilistic modeling of WIM monitoring data of an instrumented arch bridge", Smart. Struct. Syst., 17(6), 1087-1105. https://doi.org/10.12989/sss.2016.17.6.1087.
- Ye, X.W., Yi, T.H., Su, Y.H., Liu, T. and Chen, B. (2017), "Strain-based structural condition assessment of an instrumented arch bridge using FBG monitoring data", Smart. Struct. Syst., 20(2), 139-150. https://doi.org/10.12989/sss.2017.20.2.139.