• Title/Summary/Keyword: Learning Behavior

Search Result 1,434, Processing Time 0.03 seconds

Effects of Training Contents on the Work Effectiveness of Learning Workers in the Software field

  • Yoo, Hang-Suk;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.29-35
    • /
    • 2019
  • In this paper, the effects of educational contents on job behavior, the effects of job behavior on job effectiveness and the effects of educational contents on job effectiveness were studied when working in the Software field. For this purpose, a questionnaire survey was conducted on the learning workers who conducted the training in the IT field, and 302 valid questionnaires were used for the analysis. The research model was set up to test exploratory factor and confirmatory factor analysis and hypothesis, and the research hypothesis was tested by applying structural equation. The effects of job behavior on job effectiveness were positively related to job satisfaction, customer orientation, and organizational commitment.

Analysis of the Characteristics of Free-riding Learner in Online Collaborative Learning (온라인 협력학습에서 무임승차 학습자의 특성 분석)

  • Lee, Eun-Chul
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.10
    • /
    • pp.385-396
    • /
    • 2019
  • This study was conducted to explore the characteristics of learner who showed free riding behavior in online collaborative learning. For this, 290 students from three universities in the metropolitan area were studied. The collected data are as follows. Learner characteristics are learning strategy, learning motivation, academic retardation behavior, and learning disposition. Interaction distinguished between frequency and type of message. Interaction levels were collected with frequency. The subjects with less than 5 interaction frequencies were defined as free-riding students. 43 students were classified as free riders. Learner characteristics were analyzed by cluster analysis. As a result, the learner characteristics were divided into five groups. All the free riding students belonged to 4 groups. The learner characteristics of 4 groups are as follows. First, the level of the learning strategy is very low. Second, learning motivation has a high tendency toward performance - oriented approach and high tendency to avoid performance. This tends to deliberately avoid learning. Third, the level of delayed behavior is high. This is deliberately putting off student activities. Fourth, learning tendency is high in academic anxiety, task value, self efficacy and learning belief are very low. This is a lack of confidence in learning.

Modeling Laborers' Learning Processes in Construction: Focusing on Group Learning

  • Lee, Bogyeong;Lee, Hyun-Soo;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.154-157
    • /
    • 2015
  • Construction industry still requires a lot of laborers to perform a project despite of advance in technologies, and improving labor productivity is an important strategy for successful project management. Since repetitive construction works exhibits learning effect, understanding laborers' learning phenomenon therefore allows managers to have improved labor productivity. In this context, previous research efforts quantified individual laborer's learning effect, though numerous construction works are performed in group. In other words, previous research about labor learning assumed that sum of individual's productivity is same as group productivity. Also, managers in construction sites need understanding about group learning behavior for dealing with labor performance problem. To address these issues, the authors investigate what variables affect laborers' group level learning process and develop conceptual model as a basic tool of productivity estimation regarding group learning. Based on the result of this research, it is possible to understand forming mechanism of learning within the group level. Further, this research may contribute to maximizing laborers' productivity in construction sites.

  • PDF

Estimating of Link Structure and Link Bandwidth.

  • Akharin, Khunkitti;Wisit, Limpattanasiri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1299-1303
    • /
    • 2005
  • Over the last decade the research of end-to-end behavior on computer network has grown by orders but it has few researching in hop-by-hop behavior. We think if we know hop-by-hop behavior it can make better understanding in network behavior. This paper represent ICMP time stamp request and time stamp reply as tool of network study for learning in hop-by-hop behavior to estimate link bandwidth and link structure. We describe our idea, experiment tools, experiment environment, result and analysis, and our discussion in our observative.

  • PDF

A Study on the Factors Affecting Academic Achievement in Non-face-to-face Teaching-Learning

  • Koo, Min Ju;Park, Jong Keun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.162-173
    • /
    • 2022
  • In non-face-to-face teaching-learning, a survey was conducted on 55 students in the department of chemistry education at university A on the variables (behavioral control, instructor-learner interaction, cognitive learning) affecting learning satisfaction and academic achievement. There were relatively large positive correlations between variables. The positive correlation between them was found to be the factors that influenced learning satisfaction and academic achievement in non-face-to-face teaching-learning. The average values of non-face-to-face teaching-learning for each variable were lower than the corresponding values of face-to-face teaching-learning, respectively. As a result of the perception survey on the detailed factors of each variable, negative responses were relatively high in factors such as 'concentration of behavior' in behavioral control, 'level-considered explanation' in instructor-learner interaction, and 'knowledge understanding' in cognitive learning.

A Study on Recognition of Dangerous Behaviors using Privacy Protection Video in Single-person Household Environments

  • Lim, ChaeHyun;Kim, Myung Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.5
    • /
    • pp.47-54
    • /
    • 2022
  • Recently, with the development of deep learning technology, research on recognizing human behavior is in progress. In this paper, a study was conducted to recognize risky behaviors that may occur in a single-person household environment using deep learning technology. Due to the nature of single-person households, personal privacy protection is necessary. In this paper, we recognize human dangerous behavior in privacy protection video with Gaussian blur filters for privacy protection of individuals. The dangerous behavior recognition method uses the YOLOv5 model to detect and preprocess human object from video, and then uses it as an input value for the behavior recognition model to recognize dangerous behavior. The experiments used ResNet3D, I3D, and SlowFast models, and the experimental results show that the SlowFast model achieved the highest accuracy of 95.7% in privacy-protected video. Through this, it is possible to recognize human dangerous behavior in a single-person household environment while protecting individual privacy.

Gender Differences in Problematic Online Behavior of Adolescent Users over Time (남녀 청소년 소비자의 온라인 문제행동 차이에 대한 종단 분석)

  • Kim, Jung Eun
    • Human Ecology Research
    • /
    • v.53 no.6
    • /
    • pp.641-654
    • /
    • 2015
  • This study identifies and tracks changes gender differences in adolescent users' problematic online behavior. This study used Korea Youth Panel Survey (KYPS), which has tracked respondents over 7 years, with self-control theory and social learning theory applied as a theoretical framework. The model included individual-level variables such as self-control and respondent's experience of problematic behavior (offline), as well as socialization variables such as the number close friends who engaged in problematic offline behavior, parent-child relationships, and parental monitoring. Dependent variables included problematic online behavior, unauthorized ID use (ID theft) and cyberbullying (cursing/insulting someone in a chat room or on a bulletin board). Control variables consisted of academic performance, time spent on a computer, monthly household income, and father's educational attainment. Random and fixed effects models were performed by gender. Results supported self-control theory even for the within-level analysis (fixed effects models) regardless of gender, while social learning theory was partially supported. Only peer effects were found significant (except for unauthorized ID use) among girls. Year dummy variables showed significant negative associations; however, academic performance and time spent using computers were significant in some models. Father's educational attainment and monthly household income were found insignificant, even in the random effects models. We also discuss implications and suggestions for future research and policy makers.

Human Activity Recognition Based on 3D Residual Dense Network

  • Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.12
    • /
    • pp.1540-1551
    • /
    • 2020
  • Aiming at the problem that the existing human behavior recognition algorithm cannot fully utilize the multi-level spatio-temporal information of the network, a human behavior recognition algorithm based on a dense three-dimensional residual network is proposed. First, the proposed algorithm uses a dense block of three-dimensional residuals as the basic module of the network. The module extracts the hierarchical features of human behavior through densely connected convolutional layers; Secondly, the local feature aggregation adaptive method is used to learn the local dense features of human behavior; Then, the residual connection module is applied to promote the flow of feature information and reduced the difficulty of training; Finally, the multi-layer local feature extraction of the network is realized by cascading multiple three-dimensional residual dense blocks, and use the global feature aggregation adaptive method to learn the features of all network layers to realize human behavior recognition. A large number of experimental results on benchmark datasets KTH show that the recognition rate (top-l accuracy) of the proposed algorithm reaches 93.52%. Compared with the three-dimensional convolutional neural network (C3D) algorithm, it has improved by 3.93 percentage points. The proposed algorithm framework has good robustness and transfer learning ability, and can effectively handle a variety of video behavior recognition tasks.

Improvement of Activity Recognition Based on Learning Model of AI and Wearable Motion Sensors (웨어러블 동작센서와 인공지능 학습모델 기반에서 행동인지의 개선)

  • Ahn, Junguk;Kang, Un Gu;Lee, Young Ho;Lee, Byung Mun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.8
    • /
    • pp.982-990
    • /
    • 2018
  • In recent years, many wearable devices and mobile apps related to life care have been developed, and a service for measuring the movement during walking and showing the amount of exercise has been provided. However, they do not measure walking in detail, so there may be errors in the total calorie consumption. If the user's behavior is measured by a multi-axis sensor and learned by a machine learning algorithm to recognize the kind of behavior, the detailed operation of walking can be autonomously distinguished and the total calorie consumption can be calculated more than the conventional method. In order to verify this, we measured activities and created a model using a machine learning algorithm. As a result of the comparison experiment, it was confirmed that the average accuracy was 12.5% or more higher than that of the conventional method. Also, in the measurement of the momentum, the calorie consumption accuracy is more than 49.53% than that of the conventional method. If the activity recognition is performed using the wearable device and the machine learning algorithm, the accuracy can be improved and the energy consumption calculation accuracy can be improved.

Motivation based Behavior Sequence Learning for an Autonomous Agent in Virtual Reality

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1819-1826
    • /
    • 2009
  • To enhance the automatic performance of existing predicting and planning algorithms that require a predefined probability of the states' transition, this paper proposes a multiple sequence generation system. When interacting with unknown environments, a virtual agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. We describe a sequential behavior generation method motivated from the change in the agent's state in order to help the virtual agent learn how to adapt to unknown environments. In a sequence learning process, the sensed states are grouped by a set of proposed motivation filters in order to reduce the learning computation of the large state space. In order to accomplish a goal with a high payoff, the learning agent makes a decision based on the observation of states' transitions. The proposed multiple sequence behaviors generation system increases the complexity and heightens the automatic planning of the virtual agent for interacting with the dynamic unknown environment. This model was tested in a virtual library to elucidate the process of the system.

  • PDF