• Title/Summary/Keyword: Leakage Magnetic Flux

Search Result 183, Processing Time 0.03 seconds

Circular Holes Punched in a Magnetic Circuit used in Microspeakers to Reduce Flux Leakage

  • Xu, Dan-Ping;Jiang, Yuan-Wu;Lu, Han-Wen;Kwon, Joong-Hak;Hwang, Sang-Moon
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.387-392
    • /
    • 2016
  • Lower flux leakage designs have become important in the development of microspeakers used in thin and miniaturized mobile phones. We propose four methods to reduce the flux leakage of the magnetic circuit in a microspeaker. Optimization was performed based on the proposed approach by using the response surface method. Electromagnetic analyses were conducted using the finite element method. Experimental results are in good agreement with the simulated results obtained in one degree-of-freedom analysis from 100 to 5 kHz. Both the simulated and experimental results confirm that one of the proposed methods is much more effective in reducing flux leakage than the other methods. In the optimized method, compared with a default approach, the average radial flux density in the air gap decreased only by 5.5%, the maximum flux leakage was reduced by 28.6%, and the acoustic performance at primary resonance decreased by 0.45 dB, which gap is indiscernible to the human ear.

Design of Magnetic Circuit with Minimum Leakage Using Response Surface Methodology (반응표면분석법을 이용한 자계누설 최소화 설계)

  • Park, Jin-Hun;Kwon, Jung-Hak;Hwang, Sang-Mun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2010
  • This paper focuses on the design of microspeakers with minimum flux leakage, for use in radiotelegraphy. The response surface methodology (RSM) is applied as the optimization technique for obtaining a large magnetic force and a small flux leakage on diaphragm. The object functions of this optimization are the magnetic force and the flux leakage along three factors; pole piece thickness, magnet grade and yoke thickness, which are determined by the design of the experiment. The magnetic force and the flux leakage are calculated for each condition and optimized by results evaluated with RSM. For a pole piece thickness of 0.9 mm, a magnet grade of N42H and a yoke thickness of 0.75 mm, the magnetic force is satisfied as initial model and flux leakage is decreased to 11.8% than initial model.

Locating Mechanical Damages Using Magnetic Flux Leakage Inspection in Gas Pipeline System

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.521-526
    • /
    • 2010
  • Gas transmission pipelines are often inspected and monitored using the magnetic flux leakage method. An inspection vehicle known as a "pig" is launched into the pipeline and conveyed along the pipe by the pressure of natural gas. The pig contains a magnetizer, an array of sensors and a microprocessor-based data acquisition system for logging data. This paper describes magnetic flux leakage (MFL) signal processing used for detecting mechanical damages during an in-line inspection. The overall approach employs noise removal and clustering technique. The proposed method is computationally efficient and can easily be implemented. Results are presented and verified by field tests from an application of the signal processing.

Analyses of Leakage Magnetic Field and Leakage Inductance in Current Transformers by 3-D Integral Methods (3차원 적분법을 이용한 변류기의 누설 자계 및 누설 인덕턴스 해석)

  • 이희갑;박용필;이준웅;박우현;이기식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.503-506
    • /
    • 2001
  • This paper presents leakage magnetic field and leakage inductance calculations in current transformer by means of 3-D Integral methods. From the distribution diagram of leakage magnetic flux to be analyzed using program called TRACAL3, it confirms a parallel to the winding axis direction of the leakage flux lines in the air gap between the windings. The leakage inductances L$\sub$r1/ and L$\sub$R2/ of the primary and secondary windings were calculated, their values are 4.23 mH and 0.49 mH, respectively. They are also similar to the measured values of the leakage inductances for the experimental verification, 4.06 mH and 0.47 mH.

  • PDF

A Study on the Magnetic Field Analysis and Leakage Inductance in Current Transformers by 3D Integral Methods (3차원 적분법을 이용한 변류기의 자계해석과 누설 인덕턴스에 대한 연구)

  • 이희갑;박용필
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.768-772
    • /
    • 2001
  • This paper presents leakage magnetic field and leakage inductance calculations in current transformer by means of 3-D Integral methods. From the distribution diagram of leakage magnetic flux to be analyzed using program called TRACAL 3, ti confirms a parallel to the winding axis direction of the leakage flux lines in the air gap between the windings. The leakage inductances L$\sub$r1/ and L$\sub$r2/ of the primary and secondary winding were calculated, their values are 4.23 MH and 0.49 mH, respectively. They are also similar to the measured values of he leakage inductances of the experimental verification, 4.06 mH and 0.47 mH.

  • PDF

Implementation of a Modified SQI for the Preprocessing of Magnetic Flux Leakage Signal

  • Oh, Bok-Jin;Choi, Doo-Hyun
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.357-360
    • /
    • 2013
  • A modified SQI method using magnetic leakage flux (MFL) signal for underground gas pipelines' defect detection and characterization is presented in this paper. Raw signals gathered using MFL signals include many unexpected noises and high frequency signals, uneven background signals, signals caused by real defects, etc. The MFL signals of defect free pipelines primarily consist of two kinds of signals, uneven low frequency signals and uncertain high frequency noises. Leakage flux signals caused by defects are added to the case of pipelines having defects. Even though the SQI (Self Quotient Image) is a useful tool to gradually remove the varying backgrounds as well as to characterize the defects, it uses the division and floating point operations. A modified SQI having low computational complexity without time-consuming division operations is presented in this paper. By using defects carved in real pipelines in the pipeline simulation facility (PSF) and real MFL data, the performance of the proposed method is compared with that of the original SQI.

Study on the Distortion of Detecting Signals with the Multi-Defects in Magnetic Flux Leakage System (자기누설탐상시스템에서 밀집된 다수의 결함에 의한 탐상 신호 왜곡에 관한 연구)

  • Seo, Kang;Kim, Dug-Gun;Han, Jea-Man;Park, Gwan-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.876-883
    • /
    • 2007
  • The magnetic flux leakage(MFL) type nondestructive testing(NDT) method is widely used to detect corrosion, defects and mechanical deformation of the underground gas pipelines. The object pipeline is magnetically saturated by the magnetic system with permanent magnet and yokes. Hall sensors detect the leakage fields in the region of the defect. The defects are sometimes occurred in group. The accuracy of the detecting signals in this defect cluster become lowered because of the complexity of the defect cluster. In this paper, the effects of the multi -defects are analyzed. The detecting signals are computed by 3-dimensional finite element method and compared with real measurement. The results say that, rather than the size of the defects, the effects of the relative position of the multi-defects are very important on the detecting signals.

Optimum Design of a Non-Destructive Testing System to Maximize Magnetic Flux Leakage

  • Park, G.S;Jang, P.W;Rho, Y.W
    • Journal of Magnetics
    • /
    • v.6 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • This paper describes the design method of a magnetic system to maximize the magnetic flux leakage (MFL) in a non-destructive testing (NDT) system. The defect signals in a MFL type NDT system mainly depend on the change of the magnetic leakage flux in the region of a defect. The characteristics of the B-H curves are analysed and a design method to define the operating point on B-H curves for maximum leakage is performed. The computed MFL signal by a nonlinear finite element method is verified by measurement using Hall sensors mounted on the 6 legs PIG, the traveling detector unit in gas pipe, in an 8 inch test tube with defects. The rhombic defects could be successfully identified from the defect signals.

  • PDF

Dipole Model to Predict the Rectangular Defect on Ferromagnetic Pipe

  • Suresh, V.;Abudhair, A.
    • Journal of Magnetics
    • /
    • v.21 no.3
    • /
    • pp.437-441
    • /
    • 2016
  • Dipole model based analytical expression is proposed to estimate the length and depth of the rectangular defect on ferromagnetic pipe. Among the three leakage profiles of Magnetic Flux Leakage (MFL), radial and axial leakage profiles are considered in this work. Permeability variation of the specimen is ignored by considering the flux density as close to saturation level of the inspected specimen. Comparing the profile of both the components, radial leakage profile furnishes the better estimation of defect parameter. This is evident from the results of error percentage of length and depth of the defect. Normalized pattern of the proposed analytical model radial leakage profile is good agreement with the experimentally obtained profile support the performance of proposed expression.

Modeling of Flux Leakage in a Magnetic Circuit with Permanent Magnet (영구자석을 포함한 자기회로에서의 누설 자속 모델링)

  • Kim, Seung-Jong;Kim, Woo-Yeon;Lee, Jong-Min;Bae, Yong-Chae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.2
    • /
    • pp.99-105
    • /
    • 2011
  • The magnetic circuit analysis excluding flux loss and fringing effect often gives a result with unignorable error, when compared with real system. But, it is not easy to make a complete magnetic circuit model with the loss effects. This paper introduces a relatively simple method to build the model including the flux loss and fringing effect, in which the paths of leaked flux are simplified in terms of circular arcs and straight lines. After modification of the model, the error of about 36 % in maximum between the magnetic circuit analysis and FEM analysis is reduced to about 7 %.