• Title/Summary/Keyword: Leading Edge

Search Result 663, Processing Time 0.028 seconds

A Study on Noise Removal using Modified Edge Detection in AWGN Environments (AWGN 환경에서 변형된 에지 검출을 이용한 잡음 제거에 관한 연구)

  • Kwon, Se-Ik;Kim, Nam-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.7
    • /
    • pp.1342-1348
    • /
    • 2017
  • In an era where digital data takes on great importance, images are essential to various media. Noise is generated during the acquisition and transmission of such images, caused by a number of external factors. The removal of noise is an essential step in image processing. There are various methods used to remove noise, in accordance with the cause or form of the noise. AWGN is one of the leading methods. As such, this paper applies the edge detection method using the mean of each pixel after categorizing in detail the partial masks into nine areas as part of the preliminary process, in order to minimize noise that had been added to the image. In addition, the paper suggests an algorithm that applies different filters to the partial masks by using the critical mass value of the transfigured edge detection. To verify the competence of the suggested algorithm, it was compared with existing methods by using magnified images and PSNR(peak signal to noise ratio).

Surface morphology variation during wet etching of GaN epilayer grown by HVPE (HVPE법으로 성장시킨 GaN 단결정의 wet etching에 의한 표면 변화)

  • Oh, Dong Keun;Choi, Bong Geun;Bang, Sin-Yeong;Kang, Suk Hyun;Kim, So Yeon;Kim, Sae Am;Lee, Seong Kuk;Chung, Jin Hyun;Kim, Kyoung Hun;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.6
    • /
    • pp.261-264
    • /
    • 2012
  • In this paper, we investigated characteristics of etching induced surface morphology variation by wet etching of GaN epilayer were grown on sapphire (0001) substrate by hydride vapor phase epitaxy (HVPE). As a results of scanning electron microscope (SEM) observation, three types of hexagonal etch pits (Edge, Screw, Mixed) were formed by the GaN epilayer thickness variations. A lot of etch pits, attributed to screw and mixed type TD, were observed at thinner epilayer, leading to high etch pit density. On the other hand, the thickness of GaN epilayer increased with the number of etch pits corresponding to edge and mixed dislocations, which are the majority of TDs are observed.

Mechanistic investigations on emission characteristics from g-C3N4, gC3N4@Pt and g-C3N4@Ag nanostructures using X-ray absorption spectroscopy

  • Sharma, Aditya;Varshney, Mayora;Chae, Keun Hwa;Won, Sung Ok
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1458-1464
    • /
    • 2018
  • An improved method for the preparation of g-$C_3N_4$ is described. Currently, heating (> $400^{\circ}C$) of urea is the common method used for preparing the g-$C_3N_4$. We have found that sonication of melamine in $HNO_3$ solution, followed by washing with anhydrous ethanol, not only reduce the crystallite size of g-$C_3N_4$ but also facilitate intriguing electronic structure and photoluminescence (PL) properties. Moreover, loading of metal (Pt and Ag) nanoparticles, by applying the borohydride reduction method, has resulted in multicolor-emission from g-$C_3N_4$. With the help of PL spectra and local electronic structure study, at C K-edge, N K-edge, Pt L-edge and Ag K-edge by X-ray absorption spectroscopy (XAS), a precise mechanism of tunable luminescence is established. The PL mechanism ascribes the amendments in the transitions, via defect and/or metal states assimilation, between the ${\pi}^*$ states of tris-triazine ring of g-$C_3N_4$ and lone pair states of nitride. It is evidenced that interaction between the C/N 2p and metal 4d/5d orbitals of Ag/Pt has manifested a net detraction in the ${\delta}^*{\rightarrow}LP$ transitions and enhancement in the ${\pi}^*{\rightarrow}LP$ and ${\pi}^*{\rightarrow}{\pi}$ transitions, leading to broad PL spectra from g-$C_3N_4$ organic semiconductor compound.

Analysis of Applicability of RPC Correction Using Deep Learning-Based Edge Information Algorithm (딥러닝 기반 윤곽정보 추출자를 활용한 RPC 보정 기술 적용성 분석)

  • Jaewon Hur;Changhui Lee;Doochun Seo;Jaehong Oh;Changno Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.4
    • /
    • pp.387-396
    • /
    • 2024
  • Most very high-resolution (VHR) satellite images provide rational polynomial coefficients (RPC) data to facilitate the transformation between ground coordinates and image coordinates. However, initial RPC often contains geometric errors, necessitating correction through matching with ground control points (GCPs). A GCP chip is a small image patch extracted from an orthorectified image together with height information of the center point, which can be directly used for geometric correction. Many studies have focused on area-based matching methods to accurately align GCP chips with VHR satellite images. In cases with seasonal differences or changed areas, edge-based algorithms are often used for matching due to the difficulty of relying solely on pixel values. However, traditional edge extraction algorithms,such as canny edge detectors, require appropriate threshold settings tailored to the spectral characteristics of satellite images. Therefore, this study utilizes deep learning-based edge information that is insensitive to the regional characteristics of satellite images for matching. Specifically,we use a pretrained pixel difference network (PiDiNet) to generate the edge maps for both satellite images and GCP chips. These edge maps are then used as input for normalized cross-correlation (NCC) and relative edge cross-correlation (RECC) to identify the peak points with the highest correlation between the two edge maps. To remove mismatched pairs and thus obtain the bias-compensated RPC, we iteratively apply the data snooping. Finally, we compare the results qualitatively and quantitatively with those obtained from traditional NCC and RECC methods. The PiDiNet network approach achieved high matching accuracy with root mean square error (RMSE) values ranging from 0.3 to 0.9 pixels. However, the PiDiNet-generated edges were thicker compared to those from the canny method, leading to slightly lower registration accuracy in some images. Nevertheless, PiDiNet consistently produced characteristic edge information, allowing for successful matching even in challenging regions. This study demonstrates that improving the robustness of edge-based registration methods can facilitate effective registration across diverse regions.

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.

Proposal and Analysis of Distributed Reflector-Laser Diode Integrated with an Electroabsorption Modulator

  • Kwon, Oh Kee;Beak, Yong Soon;Chung, Yun C.;Park, Hyung-Moo
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.459-468
    • /
    • 2013
  • A novel integrated laser, that is, a distributed reflector laser diode integrated with an electroabsorption modulator, is proposed to improve the output efficiency, single-mode stability, and chirp. The proposed laser can be realized using the selective metalorganic vapor phase epitaxy technique (that is, control of the width of the insulating mask), and its fabrication process is almost the same as the conventional electroabsorption modulated laser (EML) process except for the asymmetric coupling coefficient structure along the cavity. For our analysis, an accurate time-domain transfer-matrix-based laser model is developed. Based on this model, we perform steady-state and large-signal analyses. The performances of the proposed laser, such as the output power, extinction ratio, and chirp, are compared with those of the EML. Under 10-Gbps NRZ modulation, we can obtain a 30% higher output power and about 50% lower chirp than the conventional EML. In particular, the simulation results show that the chirp provided by the proposed laser can appear to have a longer wavelength side at the leading edge of the pulse and a shorter wavelength side at the falling edge.

Effect of Thermal Contact Resistance on Transient Thermoelastic Contact for an Elastic Foundation (탄성기반에서 과도 열탄성 접촉에 대한 열 접촉 저항의 영향)

  • Jang Yong-Hoon;Lee Seung-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.833-840
    • /
    • 2006
  • The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed, regardless of the thermal contact resistance. However the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady state, the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger numbers of small contact areas are established, unlit eventually the accuracy of the algorithm is limited by the discretization used.

Study of Reverse Design for an Axial Turbine Blade Profile and Design Parameters for Designing Blade Geometry (축류형 터빈 익형의 역설계 및 형상설계를 위한 설계변수에 관한 연구)

  • Cho, Soo-Yong;Oh, Koon-Sup;Choi, Bum-Seog
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.2 s.7
    • /
    • pp.7-14
    • /
    • 2000
  • For a given axial turbine blade, reverse design method is developed to improve blade efficiency, optimize blade profile, or repair parts etc. In this process, design parameters for designing axial turbine blade are induced. The induced design parameters are as follows; ellipse at leading edge, radios of trailing edge, axial chord, tangential chord, wedge angle at the inlet, and unguided turning angle. Suction and pressure surfaces of turbine blade are described by cubic polynomials. Two sample blades we chosen and their blade profiles are measured at the mean radius. Values of design parameters for sample blades are obtained by the reverse design method. Re-designed blade profiles using calculated design parameters are compared with the measured data, and they show good agreement. So, the developed design method could be applied to design general turbine blades. Various blade shapes are designed, and they show that designed blade profiles can be adjusted by controlling design parameters.

  • PDF

Effects of Thermal Contact Resistance on Transient Thermoelastic Contacts for an Elastic Foundation (시간에 따른 탄성지지 열탄성 접촉에 대한 열접촉저항의 영향)

  • Jang, Yong-Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.330-333
    • /
    • 2005
  • The paper presents a numerical solution to the problem of a hot rigid indenter siding over a thermoelastic Winkler foundation with a thermal contact resistance at constant speed. It is shown analytically that no steady-state solution can exist for sufficiently high temperature or sufficiently small normal load or speed regardless of the thermal contact resistance. However, the steady state solution may exist in the same situation if the thermal contact resistance is considered. This means that the effect of the large values of temperature difference and small value of force or velocity which occur at no steady state can be lessened due to the thermal contact resistance. When there is no steady-state the predicted transient behavior involves regions of transient stationary contact interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a small number of relatively large contact and separation regions, but after the initial transient the trailing edge of the contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the algorithm is limited by the discretization used.

  • PDF

A Study on the Aerodynamic Load Characteristics of an Elliptic Airfoil (타원형 날개의 공력 특성 연구)

  • 이기영;손명환;김해원
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.6 no.4
    • /
    • pp.29-37
    • /
    • 2003
  • Using a wind tunnel testing, the aerodynamic load characteristics of an elliptic airfoil was described. The experimental data was obtained for angles of attack $-20^{\circ}$ to $+20^{\circ}$ with $2^{\circ}$ increments at a chord Reynolds number of $0.99{\times}105$ and $2.48{\times}105$. For each test case, chordwise suction pressure distributions and wake surveys were obtained. Static pressure measurements were made over a 10 sec averaging time at a 10 Hz sampling rate. For each case, wake survey was conducted with a pilot-static probe at 1.0c downstream from the trailing edge at very fine spacing to resolve the wake velocity deficit profile. As can be expected, suction pressure coefficient was increased with angle of attack. The normal force, CNmax, appeared peak value at the incidence angle of $12^{\circ}~14^{\circ}$, and the significant increase in profile drag at this range of angles of attack.