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| Effects of Thermal Contact Resistance on
Transient Thermoelastic Contacts for an Elastic Foundation
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ABSTRACT

The paper presents a numerical solution to the problem of a hot rigid indenter sliding over a thermoelastic Winkler
foundation with: a -thermal contact' resistancé” at constant speed. It is shown analytically that no steady-state solution can
éxist for sufficiently high temperature or sufficiently small normal load or speed,” regardless of the thermal contact
resistance. However, .the steady state solution may exist in the same situation if the thermal contact resistance is
considered. This means that the effect of the large values of temperature difference and small value of force or velocity
which occur at no steady state can be lessened due to the thermal contact resistance.

When there is no steady-state, the predicted transient behavior involves regions of transient stationary contact
interspersed with regions of separation regardless of the thermal contact resistance. Initially, the system typically exhibits a
small number of relatively large contact and separation regions, but after the initial transient, the trailing edge of the

" contact area is only established and the leading edge loses contact, reducing the total extent of contact considerably. As
time progresses, larger and larger number of small contact areas are established, until eventually the accuracy of the

algorithm is limited by the discretization used.

1. Introduction

When two bodies slide against each other, frictional
heating at the interface causes thermoelastic deformation
which modifies  the contact pressure distribution. Hills
and Barber[l] gave an analytical solution for sliding
Hertzian contact, using a thermoelastic Green’s function
to reduce the problem to the solution of an integral
equation with a Bessel function kernel. A remarkable
feature of their results was that no steady-state solution
could be found in certain ranges of the applied load and
sliding speed without violation of the unilateral contact

constraints. Similar results were demonstrated by
Yevtusherko and Ukhanska(2] for ‘a problem . with
interfacial thermal contact resistance, which was not a

function of pressure. Jang[3] showed that similar
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problems arise in the simpler case in which the
contacting bodies are replaced by elastic foundation. He
developed a numerical algorithm for the transient
problem in this case and showed that the contact area
tends to break down into a number of smaller regions as
sliding progresses. Even more surprising is the fact that
this process appears to continue without limit, leading to
larger and larger numbers of smaller contact areas.
Existence theorems can be proved for the corresponding
transient problem, so we must conclude that in these
parameter ranges the system must undergo periodic or
random transient variations in contact conditions.

In this study, Jang’s analysis is extended to
the sliding without friction of a hot rigid perfectly
conducting indenter over a linear thermoelastic Winkler
foundation with a thermal contact resistance, which is
not a function of pressure. We will investigate the
effects of the thermal contact re51stance on the transient
thermoelastic contact problems
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2. Statement of the Problem

Consider the problem illustrated in Fig. 1, where an

indenter at temperature 7, is pressed into the
foundation with a force F and moves to the right at
constant speed V. The mechanical behavior of the
foundation is defined by the statement that the local
contact pressure p is proportional to the local
indentation g --- ie. (x, H = cix, 1), Where c is the
elastic foundation compliance. We also assume that
lateral thermal conduction in the foundation can be
neglected so that it behaves likes a set of parallel
one-dimensional rods oriented normal to the interface

and each rod acts independently of its neighbors.
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Fig. 2.1 Geometry conﬁguratlon of transient thermal
contact

If the indenter contacts with a surface at time (= to
with a thermal resistance /A where A is the
contact area, the temperature for y{ (), ¢) ty is given
by Schneider[4]. The corresponding thermal displacement
on the surface can be shown to be

. 2 X t_to
6(3\7, H= TO (_—_\/=7l'—
+_%/_€_eh2x(t-tu)/kze7fd h x(}:—to)
%) o

where x 4 and g are the thermal diffusivity, the
thermal conductivity, and the coefficient of the thermal
expansion, respectively. If contact at x ends at =ty
the thermal displacement will remain constant at the
value &x,#;) for ¢ :

Using these results, the gap function can be defined as
follows,

&x, ) =go(x, ) —KD) —(x, ) +2dx, 9, )

where .
golx, d=(x— VO %/2R 3

is the gap between the indenter and an undeformed
foundation and g is an unknown rigid body
displacement which will generally vary with time.

The boundary condition for contact and separation
regions can be written

separation H(x, =0 ; glx, >0
contact p(x,H>0 ; glx, D=0 4)

and equilibrium requires that

F=[ px dax, o ®)

"where (is the contact region.

3. Dimensionless Formulation

The number of independent parameters can be reduced
by utilizing the self-similarity of the punch profile.
There are two length scales in the problem --—- the
radius R and a force-related quantity [ =/ 3¢fdiR We
define the dimensionless coordinates x=ux/L,
#= Wi/L and other dimensionless quantities through
B3=RyL?% g=Re/L: d=RIL?% = RYL*
A= k/W V/(kL). Introducing these definitions into
Egs. (2346) yields

P ey R

=Tl x)

O O K o2,

 B(CK (D (6)
GE-KR) =573z 0
and
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[ HxDdx =1, ®

where A=8a%T%xR/(3ncFV) .

Notice that with this formulation, the dimensionless.
parameters governing the evolution of the process are

2 which can be seen as a ratio between thermoelastic

and elastic effects and H
4. Steady-State Solution

Since the contacting body moves at a constant speed, it
is natural to expect the long-time behavior to become
invariant in a frame of reference moving with the body.
In particular, the a would then be
independent of Denotmg the value of this constant
by d, we can then find the.leading edge AD of the
contact area by enforcing g={, p=0in Eq. (7), with

-

1ndentat10n

the result ag

must be zero before contact starts, It follows that
AD=Vody+1, or that
7;(’@:.}_“%0- e

alternatively

The expansion, in the contact area can now be
ca]culated from Eq. (6) and the contact pressure from

. The traﬂmg edge of the contact area ’K}a is
defmed by the condition that the contact pressure goes
to zero. One solutlon of the resultmg equation is clearly

d’b and the other is the one rea1 root which comes
from the above analysis with X% D=0. Once 3B
have been determined, the corresponding value of /1 can
be obtained.

For the special case where a’O_O the corresponding

pressure dlsmbutlon is

7 D= ( x—D* \/W i—x

en‘(" aBD IR C)

- H+ 776

and Eq. (8) then yields

2
=d;, since the thermal expansion -

=Lmz»ﬁ“ (10)

5(25 +f62(3?1¢7r 4«25) :

'H\/_JH(

?en‘c(—% ) - Y,

‘/—E+e(5)/H

(1)

where £=7-—-7%

Only positive values of g are admissible and it can be
shown that the integral in (8) is a monotonically
increasing function of ¢, in the range d;> 0. Thus,
there is no steady-state solution of the assumed form if
the value of the right hand side in Eq. (11) is greater
than 1. Notice that the integral in Eq. (11) has two
parameters, A and H to identify the steady state
solution. Fig. 2. shows the stability diagram in which
the thermal .contact resistance is included. The .steady
state solutions are obtained when 2 is less than ]
regardless of the value of 7 However, even when [ is

greater than ‘| and His above a certain value, the
steady state solution can exist.
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Fig. 2 : Stablity diagram for and H
To determine how the system behaves at large values

of time for A> 1 and H)(, a numerical solution of
the problem has been developed, which is described in
the next section.

5. Numerical Impiementation

The contact problem can be discretized in space and
time by dividing the elastic foundation into discrete

strips of width Ax and proceeding in increments of
time At The numerical algorithm explained below was
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developed by Jangf3]. Note that
simulation, the discrete strips ofv_ width 4% =0.001
and the increments of time 47 =0.001.

in the numerical

6. Results ..
71 Contact area and rigid body penetration

When A ) 1, the transient behavior of the system

depends upon the values of H ' Fig. 3 shows the

extent of the contact area and the rigid body penetration
Fas functions of time Ffor 1 =6.0 and H=2,0 In
the initial transient, the leading edge of the contact area
remains unchanged, while the trailing edge moves,
reducing the total extent of contact. It shows that a
steady state with a single contact area is established
after about # =12, confirming. that the syétem settles
into a steady state.
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Fig. 3 ' Extent of contact area and rigid body

penetration g as function of time 7 and phase diagram
for A=6.00 and H=15

When H decreases more and the system settle into no
steady state, the initial transient
increases and involves a succession of separated contact

duration of the

areas and oscillations in the value of 7 incessantly.
Figs. 6 shows the results for =60 and H=0.5.
For Fig. 6, it shows that the system has no steady
state and its state is characterized as contact with
numerous small intervening region of separation after

about F=4.

Fig. 4
penetration aas function of time ? and phase diagram
for 1 =6.0 fmd H=05

Extent of contact area and rigid body

For 2=6.0 and H=0.1, larger separation zones
alternate with relatively small zones. of contact. .
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Fig. 3 Extent of contact area and rigid body

penetration ‘gas function of time 7 and phase diagram
for 1=6.0 and H=(.1

7. Summary

The investigation presents a numerical solution to the
problem of a hot rigid indenter sliding over a
thermoelastic  Winkler foundation with a thermal
resistance at a constant speed. The numerical solution
shows that the steady state solution, when it exists, is
the final condition regardless of the initial conditions
imposed. The results also show that the thermal contact
resistance affects the long-term behavior of the system
along with the parameter 2 , a  ratio ~ between
thermoelastic and elastic effects. Regardless of the
thermal contact resistance, the steady state solutions are

obtained when A is less than 1. However, when [ is

" greater than ], the steady state solution can exist

according to the thermal contact resistance.
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