• Title/Summary/Keyword: Lead-free piezoelectric

Search Result 189, Processing Time 0.024 seconds

Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics as a Function of CuO Addition (CuO 첨가에 따른 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성)

  • Lee, KabSoo;Kim, YouSeok;Yoo, JuHyun;Mah, Sukbum
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.10
    • /
    • pp.630-634
    • /
    • 2014
  • $(Na_{0.525}K_{0.4425}Li_{0.0375})(Nb_{0.9975}Sb_{0.065}Ta_{0.0375})O_3+0.3 wt%CoO$ ceramics were fabricated as a function of CuO addition by traditional solid state sintering process in order to develop excellent lead-free piezoelectric ceramics composition. The addition of CuO in the LNKNTS composition ceramics can effectively enhance the densification of the ceramics, resulting in the oxygen vacancies as hardening effect. The excellent piezoelectric properties of electromechanical coupling factor($k{\small}_P$) of 0.378, piezoelectric constant($d_{33}$) of 152 pC/N were obtained from the 1.0 mol% CuO doped LNKNTS ceramics sintered at $1,020^{\circ}C$ for 3 h.

Stretchable Sensor Array Based on Lead-Free Piezoelectric Composites Made of BaTiO3 Nanoparticles and Polymeric Matrix (BaTiO3 압전나노입자와 폴리머로 제작된 비납계 압전복합체의 스트레쳐블 압전 센서 어레이로의 적용 연구)

  • Bae, Jun Ho;Ham, Seong Su;Park, Sung Cheol;Park, and Kwi-Il
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.5
    • /
    • pp.312-317
    • /
    • 2022
  • Piezoelectric energy harvesting has attracted increasing attention over the last decade as a means for generating sustainable and long-lasting energy from wasted mechanical energy. To develop self-powered wearable devices, piezoelectric materials should be flexible, stretchable, and bio-eco-friendly. This study proposed the fabrication of stretchable piezoelectric composites via dispersing perovskite-structured BaTiO3 nanoparticles inside an Ecoflex polymeric matrix. In particular, the stretchable piezoelectric sensor array was fabricated via a simple and cost-effective spin-coating process by exploiting the piezoelectric composite comprising of BaTiO3 nanoparticles, Ecoflex matrix, and stretchable Ag coated textile electrodes. The fabricated sensor generated an output voltage of ~4.3 V under repeated compressing deformations. Moreover, the piezoelectric sensor array exhibited robust mechanical stability during mechanical pushing of ~5,000 cycles. Finite element method with multiphysics COMSOL simulation program was employed to support the experimental output performance of the fabricated device. Finally, the stretchable piezoelectric sensor array can be used as a self-powered touch sensor that can effectively detect and distinguish mechanical stimuli, such as pressing by a human finger. The fabricated sensor demonstrated potential to be used in a stretchable, lead-free, and scalable piezoelectric sensor array.

Fabrication and Piezoelectric Strain Characteristics of PLZT Functionally Gradient Piezoelectric Actuator by Doctor Blade Process (닥터블레이드법에 의한 PLZT계 경사기능 압전 엑튜에이터의 제조와 압전 변위 특성)

  • 김한수;최승철;이전국;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.9
    • /
    • pp.695-704
    • /
    • 1992
  • In (Pb, La)(Zr, Ti)O3 ceramic system, the functionally gradient material (FGM) was developed, and its processing and properties were investigated. The FGMs were successfully prepared through doctor blade method with acrylic binder system as well as mold stacking press method. The ultrasonic treatment was very effective for particle dispersion in slurry, and it lead to form clack-free green films. The strain-voltage characteristics of the FGM system was significantly improved which fabricated between a high piezoelectric-low dielectric and a low piezoelectric-high dielectric composition layer.

  • PDF

The Piezoelectric Properties of (Na0.5K0.5)NbO3-K5.4Cu1.3Ta10O29 Ceramics with Various K5.4Cu1.3Ta10O29 Doping and Sintering Temperatures

  • Yoon, Jung Rag;Lee, Chang-Bae;Lee, Serk Won;Lee, Heun-Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.283-286
    • /
    • 2012
  • (1-X)$(Na_{0.5}K_{0.5})NbO_3-XK_{5.4}Cu_{1.3}Ta_{10}O_{29}$ (NKN-KCT) lead-free piezoelectric ceramics have been synthesized by the conventional solid state sintering method, and their sinterability and piezoelectric properties were investigated. Typically, this material is sintered between 1,025 and $1,100^{\circ}C$ for 2 hours to achieve the required densification. Crystalline structures and Microstructures were analyzed by X-ray diffraction and scanning electron microscope. The density, dielectric constant (${\varepsilon}_r$), piezoelectric constant $d_{33}$, electromechanical coupling factor $k_p$ and mechanical quality factor $Q_m$ value of the NKN ceramics depended upon the KCT content and the sintering temperature. In particular, the KCT addition to NKN greatly improved the mechanical quality factor $Q_m$ value. The ceramic with X = 1.0 mol% sintered at $1,050^{\circ}C$ exhibited optimum properties (${\varepsilon}_r$=246, $d_{33}$=95, $k_p$=0.38 and $Q_m$=1,826). These results indicate that the ceramic is a promising candidate material for applications in lead free piezoelectric transformer and filter materials.

Dielectric and Piezoelectric Properties of Microwave Sintered BNT-ST Ceramics (마이크로파 소성법으로 제조한 BNT-ST 세라믹스의 유전 및 압전 특성)

  • Lee, Sang-Hun;Kim, Seong-Hyun;Erkinov, Farrukh;Nguyen, Hoang Thien Khoi;Duong, Trang An;Han, Hyoung-Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.37-44
    • /
    • 2020
  • This study investigated the microstructure and piezoelectric properties of lead-free 0.74(Bi1/2Na1/2)TiO3-0.26SrTiO3 (BNST26) piezoelectric ceramics sintered using a microwave furnace. For comparison, specimens were also prepared using a conventional furnace sintering (CFS). Average grain sizes of 2.4 ㎛ and 3.2 ㎛ were obtained in the sample sintered at 1,100℃ for 5 min using microwave sintering (MWS) and at 1,175℃ for 2 h using CFS, respectively. To quantify the changes in the microstructures and electrical properties according to the sintering conditions, the polarization hysteresis, bipolar and unipolar strain curves, and temperature dependence of permittivity were evaluated. As a result, it was determined that the Pmax (maximum polarization), Pr (remanent polarization) and Smax (maximum strain) values tend to increase with the average grain size. Based on these results, it is concluded that the MWS method can produce lead-free ceramics with superior performance in a relatively short time compared to the conventional CFS method.

Low-Temperature Sintering of Barium Calcium Zirconium Titanate Lead-Free Piezoelectric Ceramics

  • Fisher, John G.;Lee, Dae-Gi;Oh, Jeong-Hyeon;Kim, Ha-Nul;Nguyen, Dieu;Kim, Jee-Hoon;Lee, Jong-Sook;Lee, Ho-Yong
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.2
    • /
    • pp.157-162
    • /
    • 2013
  • The need for lead-free piezoceramics has caused a renewal of interest in $BaTiO_3$-based systems. Recently, it was found that ceramics in the $(Ba,Ca)(Zr,Ti)O_3$ system have properties comparable to those of $Pb(Zr,Ti)O_3$. However, these ceramics require rather high sintering temperatures of $1450-1550^{\circ}C$. In this work, the effect of $TiO_2$ and CuO addition on the sintering behavior, microstructure, dielectric and piezoelectric properties of $(Ba_{0.85}Ca_{0.15})(Zr_{0.1}Ti_{0.9})O_3$ (BCTZ) ceramics will be discussed. BCTZ ceramics were prepared by the mixed oxide route and 1 mol % of $TiO_2$ or CuO was added. Undoped and doped ceramics were sintered at $1350^{\circ}C$ for 1-5 h. CuO was found to be a very effective sintering aid, with samples sintered for 1 h at $1350^{\circ}C$ having a bulk density of 95% theoretical density; however the piezoelectric properties were greatly reduced, probably due to the small grain size.

Low Temperature Sintering of BNKT Lead-Free Piezoelectric Ceramics Using CuO-Coated Na0.5Bi4.5Ti4O15 Templates (산화구리가 피복된 Na0.5Bi4.5Ti4O15 틀입자를 이용한 BNKT 무연 압전 세라믹스의 저온소성 연구)

  • Jeong, Gwang-Hwi;Lee, Sang-Seop;Ahn, Chang Won;Han, Hyoung Su;Lee, Jae-Shin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.337-343
    • /
    • 2020
  • This study investigated the low temperature sintering with various templates of Bi-based lead-free piezoelectric ceramics. The effects of using CuO-coated Na0.5Bi4.5Ti4O15 templates on the sintering behavior as well as the dielectric, ferroelectric, and piezoelectric properties of Bi1/2(Na0.78K0.22)1/2TiO3 (BNKT) ceramics have been examined. In comparison with the specimens sintered with the Na0.5Bi4.5Ti4O15 templates without CuO coating, those sintered with the CuO-coated Na0.5Bi4.5Ti4O15 templates showed larger template sizes as well as a larger electric field induced strain (Smax/Emax) of 422 pm/V after sintering at temperatures as low as 975℃. These results are promising for low-cost multilayer ceramic actuator applications.

Piezoelectric Properties of Ag2O-doped 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3 Ceramics (Ag2O 첨가에 따른 0.98(Na0.5K0.5)NbO3-0.02Li(Sb0.17Ta0.83)O3 세라믹스의 압전특성)

  • Kim, Hyun-Ju;Lee, Seung-Hwan;Lee, Sung-Gap;Lee, Young-Hie
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-32
    • /
    • 2012
  • Lead-free $0.98(Na_{0.5},K_{0.5})NbO_3-0.02Li(Sb_{0.17}Ti_{0.83})O_3$ (hereafter 0.98NKN-0.02LST) ceramics doped with $Ag_2O$ were prepared using a conventional mixed oxide method. The specimen showed superior structural and electrical properties when 1 mol% $Ag_2O$ was doped. For the 0.98NKN-0.02LST+1.0mol%$Ag_2O$ ceramics sintered at $1,100^{\circ}C$, piezoelectric constant ($d_{33}$) of sample showed the optimum values of 207 pC/N. The 0.98NKN-0.02LST+1.0 mol%$Ag_2O$ ceramics are a promising candidate for lead-free piezoelectric materials.

Phase Transitional Behavior and Piezoelectric Properties of 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 Lead-free Ceramics (무연계 0.94(Na0.5K0.5NbO3-0.06Ba(Ti0.9Sn0.1)O3 세라믹의 상전이 거동과 압전 특성)

  • Cha, Yu-Joung;Nahm, Sahn;Jeong, Young-Hun;Lee, Young-Jin;Paik, Jong-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.9
    • /
    • pp.766-771
    • /
    • 2009
  • Lead-free $0.94(Na_{0.5}K_{0.5})NbO_3$-0.06Ba$(Ti_{0.9}Sn_{0.1})O_3$ [0.94NKN-0.06BTS] ceramics doped with 1 mol% $MnO_2$ were synthesized by a conventional solid state method. The phase transitional behavior and piezoelectric properties of the ceramics sintered at various temperatures were investigated. The 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$, having morphotropic phase boundary of orthorhombic and tetragonal phases, exhibited a microstructure with abnormal grain growth. A diffused phase transition behavior for all the specimens was verified as high degree of diffuseness (${\gamma}$) values from 1.45 to 1.79. A high piezoelectric constant of $d_{33}=256$ pC/N and a satisfactory electromechanical coupling factor of $k_p=42%$ were obtained for the relatively dense 0.94NKN-0.06BTS ceramics sintered at $1050^{\circ}C$.

Dielectric and Piezoelectric Properties of (Na0.54K0.46)0.96Li0.04(Nb1-0.10-xTa0.10Sbx)O3 Ceramics ((Na0.54K0.46)0.96Li0.04(Nb1-0.10-xTa0.10Sbx)O3 세라믹스의 유전 및 압전 특성)

  • Byeon, Sun-Min;Yoo, Ju-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.622-626
    • /
    • 2011
  • Lead-free piezoelectric ceramics with the composition of $(Na_{0.54}K_{0.46})_{0.96}Li_{0.04}(Nb_{1-0.10-x}Ta_{0.10}Sb_x)O_{3}$ (x= 0~8 mol%) were fabricated by nomal sintering at $1,090^{\circ}C$ for 5 h. the phase structure, microstructure and electrical properties were investigated with a emphasis on the influence of the Sb content. All samples exhibit a single perovskite phase over the whole compositional range. For the ceramics with x= 4 [mol%], two phase transitions are observed at $75^{\circ}C$ and $366^{\circ}C$, corresponding to the phase transitions of orthorhombic to tetragonal (To-t) and tetragonal to cubic (Tc), respectively. high electrical properties of $d_{33}$= 210.83 pC/N, kp= 40%, ${\varepsilon}_r$= 1,091.35, $\rho$= 4.54 g/$cm^2$ were obtained from the specimen with x= 4 [mol%], which suggests that the composition ceramics is a promising lead-free piezoelectric material.