• Title/Summary/Keyword: Lead in air

Search Result 621, Processing Time 0.022 seconds

A Study on the heat generation during implant abutment preparation (임플란트 지대주 삭제시의 발생열에 관한 연구)

  • Lee, Ho-Jin;Song, Kwang-Yeob;Jang, Tae-Yeob
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.1
    • /
    • pp.27-33
    • /
    • 2003
  • Excessive heat generation at the implant-bone interface may cause irreversible bone damage and loss of osseointegration. The effect of heat generation in vitro at the implant surface caused by abutment reduction with high-speed dental turbine was examined. Titanium-alloy abutments connected to a titanium alloy screw-implant embedded in an acrylic-resin block in a $37^{\circ}C$ water bath were prepared. Temperature changes were recorded via embedded thermocouples at the cervix and apex of the implant surface. Analysis of variance for repeated measures was used to compare seven treatment groups. Fifty seconds of continuous cutting with air and water coolant caused a mean temperature increase of $1.24^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $2.50^{\circ}C$ at apex and $1.64^{\circ}C$ at cervix. But, continuous cutting with air coolant caused a mean temperature increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Similar intermittent cutting caused increase of $6.47^{\circ}C$ at apex and $5.77^{\circ}C$ at cervix. Preparation of implant abutment does not lead to detrimental effect on peri-implant tissues provided that adequate cooling. However, without water cooling, extreme overheating could be provoked, reaching the critical temperature that would lead to irreversible bone damage within only a few seconds.

Environmental Policy Comparison under Various Potential Forms of Health Response Function (건강반응함수를 고려한 환경정책의 비교)

  • Hlasny, Vladimir
    • Environmental and Resource Economics Review
    • /
    • v.19 no.4
    • /
    • pp.915-961
    • /
    • 2010
  • This study is concerned with health damages from $SO_2$ under different assumptions on the relationship between air concentrations and their marginal health impacts. $SO_2$ concentration profiles resulting under emission caps, and a system of tradable emission allowances are compared. Using slopes and curvatures of the health response function consistent with evidence in medical literature, emission caps are shown to lead to lower aggregate damages under all considered parameters, an advantage of $26~452 million. The benefit of emission caps over tradable allowances increases with the curvature of the response function, but falls with its slope. The advantage of emission caps in terms of environmental damages is never overturned completely for the considered functional forms. The marginal damage function would have to be steeper than what the current medical evidence suggests for price instruments to outperform emission caps in terms of aggregate damages. With other welfare consequences included-emission abatement costs, consumer and producer surpluses, and government revenue-emission caps always lead to a $3.7~4.1 billion greater measure of social welfare.

  • PDF

Enhanced Piezoelectric Properties of (1-x)[0.675BiFeO3-0.325BaTiO3]-xLiTaO3 Ternary System by Air-Quenching

  • Akram, Fazli;Malik, Rizwan Ahmed;Lee, Soonil;Pasha, Riffat Asim;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.489-494
    • /
    • 2018
  • Lead free $(1-x)(0.675BiFeO_3-0.325BaTiO_3)-xLiTaO_3$ (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% $MnO_2$ and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from $3.70{\mu}m$ to $1.82{\mu}m$ were obtained in the selected compositions ($0{\leq}x{\leq}0.03$) of BFBTLT system. The maximum temperatures ($T_{max}$) were mostly higher than $420^{\circ}C$ in the studied composition range. The maximum values of maximum polarization ($P_{max}{\approx}31.01{\mu}C/cm^2$), remnant polarization ($P_{rem}{\approx}22.82{\mu}C/cm^2$) and static piezoelectric constant ($d_{33}{\approx}145pC/N$) were obtained at BFBT-0.01LT composition with 0.6 mol% $MnO_2$ and 0.4 mol% CuO. This study demonstrates that the high $T_{max}$ and $d_{33}$ for BFBTLT ceramics are favorable for industrial applications.

A Study on Metal Concentrations in the Air of Metal Products Manufacturing Industry (금속제품 제조 산업장내 공기중 금속농도에 관한 연구)

  • Kang, Yong Seon;Kim, Se Dong;Ku, Tae Hyeong;Yoon, Hyeong Ryeol;Moon, Deog Hwan;Han, Yong Soo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.6 no.2
    • /
    • pp.249-264
    • /
    • 1996
  • This study was conducted for the purpose of obtaining the fundamental data on improvement of working environment and contributing to health improvement of workers who dealed with metal by assessing the metal concentration in air of industries located in Chang-Won Industrial Complex. Authors measured the concentration of metals(Al, Cd, Cr, Cu, Mn, Ni, Pb, Sn and Zn) is the air to 25 working processes of 73 industries by flame atomic absorption spectrometry from February to December 1994. Personal air sampler was used for air sampling with mixed cellulose-ester membrane filter. The results were as follows : 1. The geometric means(range) of metal concentration; 1) Al: $0.1505mg/m^3$ ($0.0147-18.6100mg/m^3$) 2) Cd: $0.0077mg/m^3$ ($0.0003-7.0710mg/m^3$) 3) Cr: $0.0163mg/m^3$ ($0.0013-1.1510mg/m^3$) 4) Cu: $0.0097mg/m^3$ ($0.0009-0.4950mg/m^3$) 5) Mn: $0.0412mg/m^3$ ($0.0006-4.7877mg/m^3$) 6) Ni: $0.0088mg/m^3$ ($0.0001-1.0170mg/m^3$) 7) Pb: $0.0152mg/m^3$ ($0.0015-0.4499mg/m^3$) 8) Sn: $0.0486mg/m^3$ ($0.0037-0.1500mg/m^3$) 9) Zn: $0.1911mg/m^3$ ($0.0122-8.2920mg/m^3$) 2. The geometric mean of lead exceeded TWA in assembling process of other general purpose machinery not elsewhere classified products manufacturing industries.

  • PDF

QoS-Aware Approach for Maximizing Rerouting Traffic in IP Networks

  • Cui, Wenyan;Meng, Xiangru;Yang, Huanhuan;Kang, Qiaoyan;Zhao, Zhiyuan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4287-4306
    • /
    • 2016
  • Network resilience provides an effective way to overcome the problem of network failure and is crucial to Internet protocol (IP) network management. As one of the main challenges in network resilience, recovering from link failure is important to maintain the constancy of packets being transmitted. However, existing failure recovery approaches do not handle the traffic engineering problem (e.g., tuning the routing-protocol parameters to optimize the rerouting traffic flow), which may cause serious congestions. Moreover, as the lack of QoS (quality of service) restrictions may lead to invalid rerouting traffic, the QoS requirements (e.g., bandwidth and delay) should also be taken into account when recovering the failed links. In this paper, we first develop a probabilistically correlated failure model that can accurately reflect the correlation between link failures, with which we can choose reliable backup paths (BPs). Then we construct a mathematical model for the failure recovery problem, which takes maximum rerouting traffic as the optimizing objective and the QoS requirements as the constraints. Moreover, we propose a heuristic algorithm for link failure recovery, which adopts the improved k shortest path algorithm to splice the single BP and supplies more protection resources for the links with higher priority. We also prove the correctness of the proposed algorithm. Moreover, the time and space complexity are also analyzed. Simulation results under NS2 show that the proposed algorithm improves the link failure recovery rate and increases the QoS satisfaction rate significantly.

Applied Horticultural Biotechnology for the Mitigation of Indoor Air Pollution

  • Torpy, Fraser R.;Pettit, Thomas;Irga, Peter J.
    • Journal of People, Plants, and Environment
    • /
    • v.21 no.6
    • /
    • pp.445-460
    • /
    • 2018
  • Exposure to indoor air pollution is an emerging world-wide problem, with growing evidence that it is a major cause of morbidity worldwide. Whilst most indoor air pollutants are of outdoor origin, these combine with a range of indoor sourced pollutants that may lead to high pollutant levels indoors. The pollutants of greatest concern are volatile organic compounds (VOCs) and particulate matter (PM), both of which are associated with a range of serious health problems. Whilst current buildings usually use ventilation with outdoor air to remove these pollutants, botanical systems are gaining recognition as an effective alternative. Whilst many years research has shown that traditional potted plants and their substrates are capable of removing VOCs effectively, they are inefficient at removing PM, and are limited in their pollutant removal rates by the need for pollutants to diffuse to the active pollutant removal components of these systems. Active botanical biofiltration, using green wall systems combined with mechanical fans to increase pollutant exposure to the plants and substrate, show greatly increased rates of pollutant removal for both VOCs, PM and also carbon dioxide ($CO_2$). A developing body of research indicates that these systems can outperform existing technologies for indoor air pollutant removal, although further research is required before their use will become widespread. Whilst it is known that plant species selection and substrate characteristics can affect the performance of active botanical systems, optimal characteristics are yet to be identified. Once this research has been completed, it is proposed that active botanical biofiltration will provide a cheap and low energy use alternative to mechanical ventilations systems for the maintenance of indoor environmental quality.

Characteristics of Heavy Metals in the Industrial Complex Area of Pocheon City (포천시 공단지역 미세먼지 중 중금속농도 특성)

  • Shin, Hyung-Soon;Jung, Yeon-Hoon;Kim, Jin-gil;Jung, Jong-Pil;Lee, Sang-Soo;You, Han-Jo;Oh, Jo-Kyo
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.577-582
    • /
    • 2019
  • Objectives: The purpose of this survey was to assess the concentrations of heavy metals in the atmosphere of Pocheon City by measuring heavy metals in the industrial complex area and at the city air measuring station, and also to assess the degree of impact that the industrial area has on urban air quality. Methods: Sampling was carried out between February 2018 and November 2018 at two sites in the industrial complex and in the city air monitoring stations. Results: At the industrial complex in Pocheon City, air pollutant emitting businesses were emitting concentrations of fine dust (PM10) between 45 and 60 ㎍/㎥ higher than in the city air. The daily maximum concentrations of lead (Pb), manganese (Mn), and cadmium (Cd) in the industrial complex are below the WHO recommendation standard (annual average), and the impact on the urban atmosphere is judged to be insignificant. Three to five percent of fine dust (PM10) consists of metallic materials, and as the fine dust increased, metals were detected proportionally. Although cadmium (Cd) and beryllium (Be) were not detected in the city air in Pocheon and chromium (Cr), copper (Cu), and arsenic (As) were found to be 50 percent or less, it is deemed that copper (Cu) was detected at unusually high levels due to unknown air pollutants, which requires regular heavy metal measurement and cause verification. Conclusions: An analysis of the heavy metals in the industrial zone and the urban atmosphere in Pocheon City in this study showed that the linear relationship of heavy metals in the industrial zone, or the direct impact relationship, on the heavy metals in the urban atmosphere could not be estimated. The sampling device for equivalent assessment of particulate matter installed at air pollution monitoring stations is highly likely to be used for analysis of fine dust and heavy metals.

Optimization of shielding to reduce cosmic radiation damage to packaged semiconductors during air transport using Monte Carlo simulation

  • Lee, Ju Hyuk;Kim, Hyun Nam;Jeong, Heon Yong;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1817-1825
    • /
    • 2020
  • Background: Cosmic ray-induced particles can lead to failure of semiconductors packaged for export during air transport. This work performed MCNP 6.2 simulations to optimize shielding against neutrons and protons induced by cosmic radiation Methods and materials: The energy spectra of protons and neutrons by incident angle at the flight altitude were determined using atmospheric cuboid model. Various candidates for the shielding materials and the geometry of the Unit Load Device Container were evaluated to determine the conditions that allow optimal shielding at all sides of the container. Results: It was found that neutrons and protons, at the flight altitude, generally travel with a downward trajectory especially for the particles with high energy. This indicated that the largest number of particles struck the top of the container. Furthermore, the simulation results showed that, among the materials tested, borated polyethylene and stainless steel were the most optimal shielding materials. The optimal shielding structure was also determined with the weight limit of the container in consideration. Conclusions: Under the determined optimal shielding conditions, a significantly reduced number of neutrons and protons reach the contents inside the container, which ultimately reduces the possibility of semiconductor failure during air transport.

Impact of particulate matter on the morbidity and mortality and its assessment of economic costs

  • Ramazanova, Elmira;Tokazhanov, Galym;Kerimray, Aiymgul;Lee, Woojin
    • Advances in environmental research
    • /
    • v.10 no.1
    • /
    • pp.17-41
    • /
    • 2021
  • Kazakhstan's cities experience high concentrations levels of atmospheric particulate matter (PM), which is well-known for its highly detrimental effect on the human health. A further increase in PM concentrations in the future could lead to a higher air pollution-caused morbidity and mortality, causing an increase in healthcare expenditures by the government. However, to prevent elevated PM concentrations in the future, more stringent standards could be implemented by lowering current maximum allowable PM concentration limit to Organization for Economic Co-operation and Development (OECD)'s limits. Therefore, this study aims to find out what impact this change in environmental policy towards PM has on state economy in the long run. Future PM10 and PM2.5 concentrations were estimated using multiple linear regression based on gross regional product (GRP) and population growth parameters. Dose-response model was based on World Health Organization's approach for the identification of mortality, morbidity and healthcare costs due to air pollution. Analysis of concentrations revealed that only 6 out of 21 cities of Kazakhstan did not exceed the EU limit on PM10 concentration. Changing environmental standards resulted in the 71.7% decrease in mortality and 77% decrease in morbidity cases in all cities compared to the case without changes in environmental policy. Moreover, the cost of morbidity and mortality associated with air pollution decreased by $669 million in 2030 and $2183 million in 2050 in case of implementation of OECD standards. Thus, changing environmental regulations will be beneficial in terms of both of mortality reduction and state budget saving.

Plant Damages Due to Air Pollution in the Highway-on the Pinaceae (고속도로의 대기오염이 소나무과 수목에 미치는 영향)

  • Kwon, Sook-Pyo;Chung, Yong;Park, Young-Mie;Lee, Seog-Rae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.13 no.1
    • /
    • pp.1-24
    • /
    • 1985
  • The pinus trees planted by the road in the Seoul -Suwen high-way was surveyed on the damages due to air pollution during April and May in 1984. The results were as follows ; The concentration of SO$_2$was ranged from 0.003 to 0.05ppm, NOx from 0.03 to 0.1ppm and the amount of dust fall, from 10 to 110ton/km$^2$/month. While the concentrations of gaseous pollutants such as SO$_2$and NOx were notsignificantly different in the type of road and with in the distence of 20 meters from the road the dust falls were decreased as remoted from the road. The tissue damages of leaves were determined by the microscopic observation. The higher concentration of dust fall on the leaf, the more severe damage observed in the stomata. The attached dust of the leaves were ranged from 1l to 75mg/g of leaf, and those were significantly incereased as near from road. The sulfur contents of leaves were measured at 0.15g/100g of leaf in the 5 meters located and at 0.064g/100g of leaf in the 20 meters, and the lead contents, 45ug/g of leaf in the 5 meters and 24ug/g in the 15 meters. The appearent damages of plant were very much corelated to the attached dusts of leaves the sulfur contents and the amount of dust fall, and the multiple regression analysis between the damages and factors of air pollution were under taken. As increment of vehicle in future, the air Pollution was predicted and the plant damages were estimated.

  • PDF