DOI QR코드

DOI QR Code

Impact of particulate matter on the morbidity and mortality and its assessment of economic costs

  • Ramazanova, Elmira (Department of Civil and Environment Engineering, Green Energy and Environmental Laboratory, National Laboratory Astana, Nazarbayev University) ;
  • Tokazhanov, Galym (Department of Civil and Environment Engineering, Green Energy and Environmental Laboratory, National Laboratory Astana, Nazarbayev University) ;
  • Kerimray, Aiymgul (Department of Civil and Environment Engineering, Green Energy and Environmental Laboratory, National Laboratory Astana, Nazarbayev University) ;
  • Lee, Woojin (Department of Civil and Environment Engineering, Green Energy and Environmental Laboratory, National Laboratory Astana, Nazarbayev University)
  • Received : 2020.09.17
  • Accepted : 2021.01.10
  • Published : 2021.03.25

Abstract

Kazakhstan's cities experience high concentrations levels of atmospheric particulate matter (PM), which is well-known for its highly detrimental effect on the human health. A further increase in PM concentrations in the future could lead to a higher air pollution-caused morbidity and mortality, causing an increase in healthcare expenditures by the government. However, to prevent elevated PM concentrations in the future, more stringent standards could be implemented by lowering current maximum allowable PM concentration limit to Organization for Economic Co-operation and Development (OECD)'s limits. Therefore, this study aims to find out what impact this change in environmental policy towards PM has on state economy in the long run. Future PM10 and PM2.5 concentrations were estimated using multiple linear regression based on gross regional product (GRP) and population growth parameters. Dose-response model was based on World Health Organization's approach for the identification of mortality, morbidity and healthcare costs due to air pollution. Analysis of concentrations revealed that only 6 out of 21 cities of Kazakhstan did not exceed the EU limit on PM10 concentration. Changing environmental standards resulted in the 71.7% decrease in mortality and 77% decrease in morbidity cases in all cities compared to the case without changes in environmental policy. Moreover, the cost of morbidity and mortality associated with air pollution decreased by $669 million in 2030 and $2183 million in 2050 in case of implementation of OECD standards. Thus, changing environmental regulations will be beneficial in terms of both of mortality reduction and state budget saving.

Keywords

References

  1. Abdurasulov, A. (2018), "Black now troubles pollution-weary Kazakhs in Temirtau", BBC News, U.K. https://www.bbc.com/news/world-asia-42653738.
  2. Akhanova, G., Nadeem, A., Kim, J.R. and Azhar, S. (2020), "A multi-criteria decision-making framework for building sustainability assessment in Kazakhstan", Sustain. Cities Soc., 52, 101842. https://doi.org/10.1016/j.scs.2019.101842.
  3. Altieri, K.E. and Keen, S.L. (2019), "Public health benefits of reducing exposure to ambient fine particulate matter in South Africa", Sci. Total Environ., 684, 610-620. https://doi.org/10.1016/j.scitotenv.2019.05.355.
  4. Amoatey, P., Omidvarborna, H., Baawain, M.S. and Al-Mamun, A. (2019), "Emissions and exposure assessments of SOX, NOX, PM10/2.5 and trace metals from oil industries: A review study (2000-2018)", Process Saf. Environ. Prot., 123(2), 215-228. https://doi.org/10.1016/j.psep.2019.01.014.
  5. Anderson, H.R., Spix, C., Medina, S., Schouten, J.P., Castellsague, J., Rossi, G., Zmirou, D., Touloumi, G., Wojtyniak, B., Ponka, A., Bacharova, L., Schwartz, J. and Katsouyanni, K. (1997), "Air pollution and daily admission for chronic obstructive pulmonary disease in 6 European cities: Results from the APHEA project", Eur. Respir. J., 10, 1064-1071. https://doi.org/10.1183/09031936.97.10051064
  6. Atkinson, R.W., Fuller, G.W., Anderson, H.R., Harrison, R.M. and Armstrong, B. (2010), "Urban ambient particle metrics and health: A time-series analysis", Epidemiology, 21(4), 501-511. https://doi.org/10.1097/ede.0b013e3181debc88.
  7. Bonyadi, Z., Arfaeinia, H., Ramavandi, B., Omidvar, M. and Asadi, R. (2020), "Quantification of mortality and morbidity attributed to the ambient air criteria pollutants in Shiraz city, Iran", Chemosphere, 257, 127233. https://doi.org/10.1016/j.chemosphere.2020.127233.
  8. Brody, M. and Golub, A. (2014), "Improving air quality and health in Kazakhstan: monitoring, risk assessment and management", Sci. Pract. J. Med., 2(4), 1-3.
  9. Burnett, R.T., Smith-Doiron, M., Stieb, D., Cakmak, S. and Brook, J.R. (1999), "Effects of particulate and gaseous air pollution on cardiorespiratory hospitalizations", Arch. Environ. Health, 54(2), 130-139. https://doi.org/10.1080/00039899909602248.
  10. Cadelis, G., Tourres, R. and Molinie, J. (2014), "Short-term effects of the particulate pollutants contained in Saharan dust on the visits of children to the emergency department due to asthmatic conditions in Guadeloupe (French Archipelago of the Caribbean)", PLoS ONE, 9(3), 91136. https://doi.org/10.1371/journal.pone.0091136.
  11. Chiang, T.Y., Yuan, T.H., Shie, R.H., Chen, C.F. and Chan, C.C. (2016), "Increased incidence of allergic rhinitis, bronchitis and asthma, in children living near a petrochemical complex with SO2 pollution", Environ. Int., 96, 1-7. http://doi.org/10.1016/j.envint.2016.08.009.
  12. Chuang, K.J., Yan, Y.H., Chiu, S.Y. and Cheng, T.J. (2011), "Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan", Occup. Environ. Med., 68(1), 64-68. http://doi.org/10.1136/oem.2009.052704.
  13. Committee on Statistics (2018), "Population Statistics", Committee on Statistics of the Ministry of National Economy of the Republic of Kazakhstan, Kazakhstan.
  14. Correia, A.W., Pope III, C.A., Dockery, D.W., Wang, Y., Ezzati, M. and Dominici, F. (2015), "The effect of air pollution control on life expectancy in the United States: An analysis of 545 US counties for the period 2000 to 2007", J. Invest. Dermatol., 135(2), 612-615. https://doi.org/10.1097/EDE.0b013e3182770237.
  15. Coskuner, G., Jassim, M.S. and Munir, S. (2018), "Characterizing temporal variability of PM 2.5 /PM 10 ratio and its relationship with meteorological parameters in Bahrain", Environ. Forensics, 19(4), 315-326. https://doi.org/10.1080/15275922.2018.1519738.
  16. Dappe, V., Uzu, G., Schreck, E., Wu, L., Li, X., Dumat, C., Moreau, M., Hanoune, B., Ro, C.U. and Sobanska, S. (2018), "Single-particle analysis of industrial emissions brings new insights for health risk assessment of PM", Atmos. Pollut. Res., 9(4), 697-704. https://doi.org/10.1016/j.apr.2018.01.016.
  17. Delucchi, M.A., Murphy, J.J. and McCubbin, D.R. (2002), "The health and visibility cost of air pollution: A comparison of estimation methods", J. Environ. Manag., 64(2), 139-152. https://doi.org/10.1006/jema.2001.0515.
  18. Duan, J., Chen, Y., Fang, W. and Su, Z. (2015), "Characteristics and relationship of PM, PM10, PM2.5 concentration in a polluted city in Northern China", Proc. Eng., 102, 1150-1155. https://doi.org/10.1016/j.proeng.2015.01.239.
  19. EEA (2019), "Air pollution sources", European Environment Agency, Copenhagen, Denmark. https://www.eea.europa.eu/themes/air/air-pollution-sources-1.
  20. European Commission (2019), "Air quality standards", European Commission, Brussels, Belgium. https://ec.europa.eu/environment/air/quality/standards.htm.
  21. Fang, Y., Naik, V., Horowitz, L.W. and Mauzerall, D.L. (2013), "Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present", Atmos. Chem. Phys., 13(3), 1377-1394. https://doi.org/10.5194/acp-13-1377-2013.
  22. Gao, M., Guttikunda, S.K., Carmichael, G.R., Wang, Y., Liu, Z., Stanier, C.O., Saide, P.E. and Yu, M. (2015), "Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area", Sci. Total Environ., 511, 553-561. https://doi.org/10.1016/j.scitotenv.2015.01.005.
  23. Giannadaki, D., Giannakis, E., Pozzer, A. and Lelieveld, J. (2018), "Estimating health and economic benefits of reductions in air pollution from agriculture", Sci. Total Environ., 622, 1304-1316. https://doi.org/10.1016/j.scitotenv.2017.12.064.
  24. Graff Zivin, J. and Neidell, M. (2011), "The impact of pollution on worker productivity", Nber Working Paper Series, 2011, 17004. https://doi.org/10.3386/w17004.
  25. Hanna, R. and Oliva, P. (2015), "The effect of pollution on labor supply: Evidence from a natural experiment in Mexico city", J. Public Econ., 122, 68-79. https://doi.org/10.1016/j.jpubeco.2014.10.004.
  26. Huang, D., Xu, J. and Zhang, S. (2012), "Valuing the health risks of particulate air pollution in the pearl river delta, China", Environ. Sci. Policy, 15(1), 38-47. https://doi.org/10.1016/j.envsci.2011.09.007.
  27. Huang, D.S, and Zhang, S. (2013), "Health benefit evaluation for PM2.5 pollution control in Beijing-Tianjin-Hebei region of China", Zhongguo Huanjing Kexue/China Environ. Sci., 33, 166-174.
  28. Hunt, A., Ferguson, J., Hurley, F. and Searl, A. (2016), "Social costs of morbidity impacts of air pollution", OECD Work. Papers, 99, 78.
  29. Jiang, N., Yin, S., Guo, Y., Li, J., Kang, P., Zhang, R. and Tang, X. (2018), "Characteristics of mass concentration, chemical composition, source apportionment of PM2.5 and PM10 and health risk assessment in the emerging megacity in China", Atmos. Pollut. Res., 9(2), 309-321. https://doi.org/10.1016/j.apr.2017.07.005.
  30. Kan, H. and Chen, B. (2004), "Particulate air pollution in urban areas of Shanghai, China: Health-based economic assessment", Sci. Total Environ., 322(1-3), 71-79. https://doi.org/10.1016/j.scitotenv.2003.09.010.
  31. Kazhydromet (2018), Informational Bulletin on the State of Environment in the Republic of Kazakhstan, Kazakhstan.
  32. Kenessariyev, U., Golub, A., Brody, M., Dosmukhametov, A., Amrin, M., Erzhanova, A. and Kenessary, D. (2013), "Human health cost of air pollution in Kazakhstan", J. Environ. Protect., 4(8), 869-876. http://doi.org/10.4236/jep.2013.48101.
  33. Kenessary, D., Kenessary, A., Adilgireiuly, Z., Akzholova, N., Erzhanova, A., Dosmukhametov, A., Syzdykov, D., Masoud, A. and Saliev, T. (2019), "Air pollution in Kazakhstan and its health risk assessment", Annal. Global Health, 85(1), 133. https://doi.org/10.5334/aogh.2535.
  34. Kerimray, A., Azbanbayev, E., Kenessov, B., Plotitsyn, P., Alimbayeva, D. and Karaca, F. (2020), "Spatiotemporal variations and contributing factors of air pollutants in Almaty, Kazakhstan", Aerosol Air Quality Res., 20(6), 1340-1352. https://doi.org/10.4209/aaqr.2019.09.0464.
  35. Kerimray, A., Tokazhanov, G., Ramazanova, E. and Lee, W. (2018), Analysis of Historical Trends of Air Pollutants Concentrations in the Cities of Kazakhstan and Assessment of Their Future Concentrations Estimated until 2050 According to "Business as Usual" and "OECD Standards" Scenario, National Laboratory Astana, Kazakhstan.
  36. Kerimray, A., Baimatova, N., Ibragimova, O.P., Bukenov, B., Kenessov, B., Plotitsyn, P. and Karaca, F. (2020), "Assessing air quality changes in large cities during COVID-19 lockdowns: The impacts of traffic-free urban conditions in Almaty, Kazakhstan", Sci. Total Environ., 730, 139179. https://doi.org/10.1016/j.scitotenv.2020.139179.
  37. Kim, K.H., Kabir, E. and Kabir, S. (2015), "A review on the human health impact of airborne particulate matter", Environ. Int., 74, 136-143. http://doi.org/10.1016/j.envint.2014.10.005.
  38. Kumar, P., Skouloudis, A.N., Bell, M., Viana, M., Carotta, M.C., Biskos, G. and Morawska, L. (2016), "Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings", Sci. Total Environ., 560, 150-159. https://doi.org/10.1016/j.scitotenv.2016.04.032.
  39. Li, T. and Lin, G. (2014), "Examining the role of location-specific associations between ambient air pollutants and adult asthma in the United States", Health Place, 25, 26-33. http://doi.org/10.1016/j.healthplace.2013.10.007.
  40. Long, J. (2020), "Nur-Sultan: A new city for a new era in Kazakhstan", Astana Times, Kazakhstan.
  41. Lopez-Aparicio, S., Guerreiro, C., Viana, M., Reche, C. and Querol, X. (2013), "Contribution of agriculture to air quality problems in cities and in rural areas in Europe", ETC/ACM, 10, 2013.
  42. Lucarelli, F., Barrera, V., Becagli, S., Chiari, M., Giannoni, M., Nava, S., Traversi, R. and Calzolai, G. (2019), "Combined use of daily and hourly data sets for the source apportionment of particulate matter near a waste incinerator plant", Environ. Pollut., 247, 802-811. https://doi.org/10.1016/j.envpol.2018.11.107.
  43. Meister, K., Johansson, C. and Forsberg, B. (2012), "Estimated short-term effects of coarse particles on daily mortality in Stockholm, Sweden", Environ. Health Perspect., 120(3), 431-436. https://doi.org/10.1289/ehp.1103995.
  44. Nunez-Alonso, D., Perez-Arribas, L.V., Manzoor, S. and Caceres, J.O. (2019), "Statistical tools for air pollution assessment: Multivariate and spatial analysis studies in the Madrid region", J. Anal. Methods Chem., 2019, 9753927. https://doi.org/10.1155/2019/9753927.
  45. OECD (2014), The Cost of Air Pollution, Organisation for Economic Co-operation and Development, Paris, France.
  46. OECD (2016), The Economic Consequences of Outdoor Air Pollution, Organisation for Economic Cooperation and Development, Paris, France.
  47. 365 Info.kz. (2014), К 2030 Годув Атырау Ожидается Рост Населения [Population Growth is Expected by 2030 in Atyrau], 365 Info.kz., Kazakhstan. https://365info.kz/2014/11/k-2030-godu-v-atyrauozhidaetsya-rost-naseleniya.
  48. Ostro, B. (2004), Outdoor Air Pollution: Assessing the Environmental Burden of Disease at National and Local Levels, WHO, Geneva.
  49. Perera, F., Berberian, A., Cooley, D., Shenaut, E., Olmstead, H., Ross, Z. and Matte, T. (2021), "Health benefits of sustained air quality improvements in New York city: A simulation based on air pollution levels during the COVID-19 shutdown", Environ. Res., 193, 110555. https://doi.org/10.1016/j.envres.2020.110555.
  50. Pervin, T., Gerdtham, U.G. and Lyttkens, C.H. (2008), "Societal costs of air pollution-related health hazards: A review of methods and results", Cost Eff. Resour. Alloc., 6, 19. https://doi.org/10.1186/1478-7547-6-19.
  51. Pimpin, L., Retat, L., Fecht, D., de Preux, L., Sassi, F., Gulliver, J., Belloni, A., Ferguson, B., Corbould, E., Jaccard, A. and Webber, L. (2018), "Estimating the costs of air pollution to the national health service and social care: An assessment and forecast up to 2035", PLOS Med., 15(7), e1002602. https://doi.org/10.1371/journal.pmed.1002602.
  52. Pope, C.A., Dockery, D.W. and Schwartz, J. (1995), "Review of epidemiological evidence of health effects of particulate air pollution", Inhal. Toxicol., 7(1), 1-18. https://doi.org/10.3109/08958379509014267.
  53. Saramak, A. (2019), "Comparative analysis of indoor and outdoor concentration of PM10 particulate matter on example of Cracow city center", Int. J. Environ. Sci. Technol., 16(11), 6609-6616. https://doi.org/10.1007/s13762-019-02250-5.
  54. Shah, A.S., Langrish, J.P., Nair, H., McAllister, D.A., Hunter, A.L., Donaldson, K., Newby, D.E. and Mills, N.L. (2013), "Global association of air pollution and heart failure: A systematic review and metaanalysis", Lancet, 382(9897), 1039-1048. http://doi.org/10.1016/S0140-6736(13)60898-3.
  55. Sun, R., Zhou, Y., Wu, J. and Gong, Z. (2019), "Influencing factors of PM2.5 pollution: Disaster points of meteorological factors", Int. J. Environ. Res. Public Health, 16(20), 3891. https://doi.org/10.3390/ijerph16203891.
  56. Syzdykbaev, A. (2016), "By 2050 GDP per capita will Grow 4.5 times - Kazakh president", Kazpravda, Kazakhstan.
  57. Torkmahalleh, M.A., Hopke, P.K., Broomandi, P., Naseri, M., Abdrakhmanov, T., Ishanov, A., Kim, J. Shah, D. and Kumar, P. (2020), "Exposure to particulate matter and gaseous pollutants during cab commuting in Nur-Sultan city of Kazakhstan", Atmos. Pollut. Res., 11(5), 880-885. https://doi.org/10.1016/j.apr.2020.01.016.
  58. UNDESA (2017), Changing Population Age Structures and Sustainable Development: A Concise Report, Department of Economic and Social Affairs, UNDESA, New York, U.S.A.
  59. Moi Gorod (2019), Жителей Уральска Стало Больше - Новости Уральска, Актобе, Атырау [The number of Uralsk residents has increased - News from Uralsk, Aktobe, Atyrau], Moi Gorod, Kazakhstan. https://mgorod.kz/nitem/zhitelej-uralska-stalo-bolshe.
  60. Vardoulakis, S. and Kassomenos, P. (2008), "Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management", Atmos. Environ., 42(17), 3949-3963. https://doi.org/10.1016/j.atmosenv.2006.12.021.
  61. Vinnikov, D., Tulekov, Z. and Raushanova, A. (2020), "Occupational exposure to particulate matter from air pollution in the outdoor workplaces in almaty during the cold season", PLoS ONE, 15(1), 1-14. https://doi.org/10.1371/journal.pone.0227447.
  62. Wenbo, Z. and Shiqiu, Z. (2010), "Economic valuation of health impact of PM10 pollution in Beijing from 2001 to 2006", Chinese J. Popul. Resour. Environ. 8(2), 68-74. https://doi.org/10.1080/10042857.2010.10684979.
  63. WHO (2009), Country Profiles of Environmental Burden of Disease, Kazakhstan, World Health Organization, Geneva, Switzerland.
  64. WHO (2018), Ambient (Outdoor) Air Pollution, World Health Organization, Geneva, Switzerland.
  65. World Bank (2012), Improving Industrial Competitiveness through Potential of Cleaner and Greener Production, Washington, U.S.A.
  66. Wu, R., Dai, H., Geng, Y., Xie, Y., Masui, T., Liu, Z. and Qian, Y. (2017), "Economic impacts from PM2.5 pollution-related health effects: A case study in Shanghai", Environ. Sci. Technol., 51(9), 5035-5042. https://doi.org/10.1021/acs.est.7b00026.
  67. Wu, Y., Li, R., Cui, L., Meng, Y., Cheng, H. and Fu, H. (2020), "The high-resolution estimation of sulfur dioxide (SO2) concentration, health effect and monetary costs in Beijing", Chemosphere, 241, 125031. https://doi.org/10.1016/j.chemosphere.2019.125031.
  68. Xu, G., Jiao, L., Zhang, B., Zhao, S., Yuan, M., Gu, Y., Liu, J. and Tang, X. (2017), "Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China", Aerosol Air Qual. Res., 17(3), 741-751. https://doi.org/10.4209/aaqr.2016.09.0406.
  69. Xu, W., Zeng, Z., Xu, Z., Li, X., Chen, X., Li, X., Xio, R., Liang, J., Chen, G., Lin, A., Li, J. and Zeng, G. (2020), "Public health benefits of optimizing urban industrial land layout - the case of Changsha, China", Environ. Pollut., 263, 114388. https://doi.org/10.1016/j.envpol.2020.114388.
  70. Yang, Y., Ruan, Z., Wang, X., Yang, Y., Mason, T G., Lin, H. and Tian, L. (2019), "Short-term and long-term exposures to fine particulate matter constituents and health: A systematic review and meta-analysis", Environ. Pollut., 247, 874-882. https://doi.org/10.1016/j.envpol.2018.12.060.
  71. Zanobetti, A., Schwartz, J. and Dockery, D.W. (2000), "Airborne particles are a risk factor for hospital admissions for heart and lung disease", Environ. Health Perspect., 108(11), 1071-1077. https://doi.org/10.1289/ehp.001081071.
  72. Zhang, D., Aunan, K., Seip, H.M., Larssen, S., Liu, J. and Zhang, D. (2010), "The assessment of health damage caused by air pollution and its implication for policy making in Taiyuan, Shanxi, China", Energy Policy, 38(1), 491-502. https://doi.org/10.1016/j.enpol.2009.09.039.
  73. Zhao, D., Chen, H., Yu, E. and Luo, T. (2019), "PM 2.5 /PM 10 ratios in eight economic regions and their relationship with meteorology in China", Adv. Meteorol., 2019, 5295726. https://doi.org/10.1155/2019/5295726.
  74. Zhusupova, A. and Kenesov, A. (2012), "Внутренние Мигрантыи Современный Казахстан [Internal Migrants and Modern Kazakhstan]", Вестник КазНУ, 3(40), 44-47.