Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.9.489

Enhanced Piezoelectric Properties of (1-x)[0.675BiFeO3-0.325BaTiO3]-xLiTaO3 Ternary System by Air-Quenching  

Akram, Fazli (School of Materials Science and Engineering, Changwon National University)
Malik, Rizwan Ahmed (School of Materials Science and Engineering, Changwon National University)
Lee, Soonil (School of Materials Science and Engineering, Changwon National University)
Pasha, Riffat Asim (Department of Metallurgy and Materials Engineering, UET Taxila)
Kim, Myong Ho (School of Materials Science and Engineering, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.28, no.9, 2018 , pp. 489-494 More about this Journal
Abstract
Lead free $(1-x)(0.675BiFeO_3-0.325BaTiO_3)-xLiTaO_3$ (BFBTLT, x = 0, 0.01, 0.02, and 0.03, with 0.6 mol% $MnO_2$ and 0.4 mol% CuO) were prepared by a solid state reaction method, followed by air quenching and their crystalline phase, morphology, dielectric, ferroelectric and piezoelectric properties were explored. An X-ray diffraction study indicates that lithium (Li) and tantalum (Ta) were fully incorporated in the BFBT materials with the absence of any secondary phases. Dense ceramic samples (> 92 %) with a wide range of grain sizes from $3.70{\mu}m$ to $1.82{\mu}m$ were obtained in the selected compositions ($0{\leq}x{\leq}0.03$) of BFBTLT system. The maximum temperatures ($T_{max}$) were mostly higher than $420^{\circ}C$ in the studied composition range. The maximum values of maximum polarization ($P_{max}{\approx}31.01{\mu}C/cm^2$), remnant polarization ($P_{rem}{\approx}22.82{\mu}C/cm^2$) and static piezoelectric constant ($d_{33}{\approx}145pC/N$) were obtained at BFBT-0.01LT composition with 0.6 mol% $MnO_2$ and 0.4 mol% CuO. This study demonstrates that the high $T_{max}$ and $d_{33}$ for BFBTLT ceramics are favorable for industrial applications.
Keywords
lead-free; bismuth ferrite; dielectric; ferroelectric; piezoelectric;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science., 299, 1719 (2003).   DOI
2 N. Kumar, N. Panwar, B. Gahtori, N. Singh, H. Kishan and V. P. S. Awana, J. Alloys Compd., 501, L29 (2010).   DOI
3 G. H. Ryu, A. Hussain, M. H. Lee, R. A. Malik, T. K. Song, W. J. Kim and M. H. Kim, J. Eur. Ceram. Soc., 38, 4414 (2018).   DOI
4 C. Zhou, A. Feteira, X. Shan, H. Yang, Q. Zhou, J. Cheng, W. Li and H. Wang, Appl. Phys. Lett., 101, 032901 (2012).   DOI
5 T. Sebastian, I. Sterianou, I. M. Reaney, T. Leist, W. Jo and J. Rodel, J. Electroceram., 28, 95 (2012).   DOI
6 C. Ederer and N. A. Spaldin, Phys. Rev. Lett., 95, 257601 (2005).   DOI
7 S. O. Leontsev and R. E. Eitel, J. Mater. Res., 26, 9 (2011).   DOI
8 D. S. Kim, J. S. Kim and C. I. Cheon, J. Korean Ceram. Soc., 53, 162 (2016).   DOI
9 C. Michel, J. M. Moreau, G. D. Achenbach, R. Gerson and W. J. James, Solid State Commun., 7, 701 (1969).   DOI
10 N. Itoh, T. Shimura, W. Sakamoto and T. Yogo, Ferroelectrics, 356, 19 (2007).   DOI
11 J. S. Kim, C. I. Cheon, H. J. Kang and P. W. Jang, J. Eur. Ceram. Soc., 27, 3951 (2007).   DOI
12 H. Singh, A. Kumar and K. L. Yadav, Mater. Sci. Eng. B, 176, 540 (2011).   DOI
13 J. S. Kim, C. I. Cheon, P. W. Jang, Y. N. Choi and C. H. Lee, J. Eur. Ceram. Soc., 24, 1551 (2004).   DOI
14 H. Nagata, N. Koizumi, N. Kuroda, I. Igarashi and T. Takenaka, Ferroelectrics, 229, 273 (1999).   DOI
15 Y. Hiruma, R. Aoyagi, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 44, 5040 (2005).   DOI
16 X. Sun, J. Chen, R. Yu, X. Xing, L. Qiao, G. Liu, Sci. Technol. Adv. Mater., 9, 025004 (2008).   DOI
17 X. Wu, L. Luo, N. Jiang, X. Wu and Q. Zheng, B. Mater. Sci., 39, 737 (2016).   DOI
18 A. Prasatkhetragarna, P. Muangkonkada, P. Aommongkola, P. Jantaratana, N. Vittayakorn and R. Yimnirund, Ceram. Int., 39, S249 (2013).   DOI
19 I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Frömling, J. Rödel and W. Jo, J. Appl. Phys., 119, 154101 (2016).   DOI
20 H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, W. Li and H. Wang, J. Eur. Ceram. Soc., 33, 1177 (2013).   DOI
21 W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, A. J. Bell and J. Rodel, J. Appl. Phys., 110, 074106 (2011).   DOI
22 R. Dittmer, W. Jo, J. Daniels, S. Schaab and J. Rodel, J. Am. Ceram. Soc., 94, 4283 (2011).   DOI
23 A. Hussain, A. Maqbool, R. A. Malik, J. U. Rahman, T. K. Song, W. J. Kim and M. H. Kim, Ceram. Int., 41, S26 (2015).   DOI
24 C. I. Cheon, J. H. Choi, J. S. Kim, J. Zang, T. Fromling, J. Rodel and W. Jo, J. Appl. Phys., 119, 15410 (2016).
25 T. V. D. Ngoc, H. S. Han, K. J. Kim, R. A. Malik, A. Hussain and J. S. Lee, J. Ceram. Process. Res., 13, 177 (2012).
26 L. E. Cross, Ferroelectrics, 76, 241 (1987).   DOI
27 K. T. P. Seifert, W. Jo and J. Rodel, J. Am. Ceram. Soc., 93, 1392 (2010).
28 F. Kubel and H. Schmid, Acta. Crystallogr. B. Struct. Sci. Crust. Eng. Mater., 46, 698 (1990).   DOI
29 K. Yoshii, Y. Hiruma, H. Nagata and T. Takenaka, Jpn. J. Appl. Phys., 45, 4493 (2006).   DOI
30 E. M. Anton, W. Jo, D. Damjanovic and J. Rodel, J. Appl. Phys., 110, 094108 (2006).
31 N. Jiang, M. Tian, L. Luo, Q. Zheng, D. Shi, K. H. Lam, C. Xu and D. Lin, J. Electron. Mater., 45, 291 (2016).   DOI
32 J. Chen and J. Cheng, J. Alloys Compd., 589, 115 (2014).   DOI
33 H. Yang, C. Zhou, X. Liu, Q. Zhou, G. Chen, H. Wang and W. Li, Mater. Res. Bull., 47, 4233 (2012).   DOI
34 D. Damjanovic, Rep. Prog. Phys., 61, 1267 (1998).   DOI
35 Y. Watanabe, Y. Hiruma, H. Nagata and T. Takenaka, Key Eng. Mater., 388, 229 (2009).
36 A. Ullah, C. W. Ahn, R. A. Malik, J. S. Lee and I. W. Kim, J. Electroceram., 33, 187 (2014).   DOI
37 Z. Yang, B. Liu, L. Wei and Y. Hou, Mater. Res. Bull., 43, 81 (2008).   DOI
38 A. Ullah, C. W. Ahn, K. B. Jang, A. Hussain and I. W. Kim, Ferroelectrics, 404, 167 (2010).   DOI
39 J. Rödel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura and D. Damjanovic, J. Eur. Ceram. Soc., 35, 1659 (2015).   DOI
40 G. H. Haertling, J. Am. Ceram. Soc., 82, 797 (1999).   DOI
41 J. Lee, H. Oh and H. Lee, J. Korean Ceram. Soc., 53, 171 (2016).   DOI
42 A. Hussain, A. Maqbool, R. A. Malik, J. U. Rahman, J. H. Lee, Y. S. Sung, T. K. Song and M. H. Kim, Ceram. Int., 43, S204 (2017).   DOI
43 R. A. Malik, A. Hussain, M. Acosta, J. Daniels, H. S. Han, M. H. Kim and J. S. Lee, J. Eur. Ceram. Soc., 38, 2511 (2018).   DOI
44 I. Sosnowska, T. P. Neumaier and E. Steichele, J. Phys. C., 15, 4835 (1982).   DOI
45 F. Akram, A. Hussain, R. A. Malik, T. K. Song, W. J. Kim, J. Lee and M. H. Kim, Ceram. Int., 43, S209 (2017).   DOI
46 R. A. Malik, A. Zaman, A. Hussaina, A. Maqbool, T. K. Song, W. J. Kim, Y. S. Sung and M. H. Kim, J. Eur. Ceram. Soc., 38, 2259 (2018).   DOI
47 Y. Wang and C. W. Nan, Appl. Phys. Lett., 89, 052903 (2006).   DOI
48 F. Akram, R. A. Malik, T. K. Song, W. J. Kim, J. Lee and M. H. Kim, Mater. Lett., 217, 16 (2018).   DOI
49 M. H. Lee, D. J. Kim, J. S. Park, S. W. Kim, T. K. Song, M. H. Kim, W. J. Kim, D. Do and I. K. Jeong, Adv. Mater., 27, 6976 (2015).   DOI
50 P. Fischer, M. Polomska, I. Sosnowska and M. Szymanski, J. Phys. C., 13, 1931 (1980).   DOI