• 제목/요약/키워드: Layered material

검색결과 760건 처리시간 0.031초

TiO2/Si3N4/Ag/Si3N4/TiO2 다층구조에서 Si3N4 버퍼층이 투과율에 미치는 영향 (Effect of Si3N4 Buffer Layer on Transmittance of TiO2/Si3N4/Ag/Si3N4/TiO2 Multi Layered Structure)

  • 이서희;장건익
    • 한국전기전자재료학회논문지
    • /
    • 제25권1호
    • /
    • pp.44-47
    • /
    • 2012
  • The $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ multi layered structure was designed for the possible application of transparent electrodes in PDP (Plasma Display Panel). Multi layered film was deposited on a glass substrate at room temperature by DC/RF magnetron sputtering system and EMP (Essential Macleod Program) was adopted to optimize the optical characteristics of film. During the deposition process, the Ag layer in $TiO_2/Ag/TiO_2$ became heavily oxidized and the filter characteristic was degraded easily. In thus study, Si3N4 layer was used as a diffusion buffer layer between $TiO_2$ and Ag. in order to prevent the oxidation of Ag layer in $TiO_2/Si_3N_4/Ag/Si_3N_4/TiO_2$ structure. It was confirmed that $Si_3N_4$ layer is one of candidate materials acting as diffusin barrier between $TiO_2/Ag/TiO_2$.

Fabrication of diamond/W-Cu functionally graded material by microwave sintering

  • Wei, Chenlong;Cheng, Jigui;Zhang, Mei;Zhou, Rui;Wei, Bangzheng;Yu, Xinxi;Luo, Laima;Chen, Pengqi
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.975-983
    • /
    • 2022
  • A four-layered W/Cu functionally graded material (FGM) (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W60% + Cu40%, wt.% fraction) and a four-layered diamond/W-Cu FGM (W90% + Cu10%/W80% + Cu20%/W70% + Cu30%/W55% + Cu40% + diamond5%, wt.% fraction) were fabricated by microwave sintering. The thermal conductivity and thermal shock resistance of diamond/W-Cu FGM and W-Cu FGM were investigated. The morphologies of the diamond particles and different FGMs were analyzed using AFM, SEM, EDS, and TEM. The results show that a 200 nm rough tungsten coating was formed on the surface of the diamond. The density of the tungsten-coated diamond/W-Cu FGM, obtained by microwave sintering at 1200 ℃ for 30 min, was 94.66%. The thermal conductivity of the fourlayered diamond/W-Cu FGM was 220 W·m-1·K-1, which is higher than that of the four-layered W/Cu FGM (209 W m-1 K-1). This indicates that adding an appropriate amount of tungsten-coated diamond to the high Cu layer W/Cu FGM improves the thermal conductivity of the composite. The diamond/W-Cu FGM sintered at 1200 ℃ for 10 min exhibited better thermal shock resistance than diamond/W-Cu FGM sintered at 1100 ℃ for 10 min.

Development of Broadband Electromagnetic Wave Absorber for X-band Sensors in Double-layered Type Using Carbon

  • Choi, Chang-Mook;Kim, Dong-Il;Li, Rui;Choi, Dong-Han
    • 한국항해항만학회지
    • /
    • 제30권9호
    • /
    • pp.763-766
    • /
    • 2006
  • In this paper, the EM wave absorbers were designed and fabricated for X -band sensors using Carbon of dielectric material with CPE. The complex relative permittivity of samples is calculated by using measurement results of S-parameter. We simulated the double-layered type EM wave absorber with broad bandwidth using the measured complex relative permittivity by changing the thickness and layer, which was fabricated based on the simulated design The fabricated EM wave absorber consists of 1 mm first layer sheet facing metal with Carbon composition ratio 70 vol. % and 1.5 mm second layer sheet with Carbon composition ratio 60 vol. %. The measured results showed a good agreement to the simulated ones. It is found toot the optimized absorption ability of double-layered type EM wave absorber with thickness of 2.5 mm is higher than 10 dB from 7.8 GHz to 13.3 GHz.

일반 모르타르를 이용한 분절 복합체의 정하중 및 충격하중 실험 (Behavior of Segmented Composites Using General Mortar under Static and Impact Loading)

  • 김율희;민경환;이재성;윤영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.33-36
    • /
    • 2008
  • 조개껍질과 같이 얇은 요소들이 생체적인 접착제에 의해서 겹겹이 쌓여 층 구조를 이루는 패각은 정적하중 및 충격하중에 대하여 뛰어난 저항 성능을 보이는 것으로 알려져 있다. 이러한 다양한 층 구조의 복합재료는 두 개의 서로 다른 매질이 적층되면서 단일 재질의 경우보다 충격, 완화 효율이 극대화될 것이라 판단된다. 본 연구에서는 충격을 견디고 최소화시키기 위한 분절 복합체(Segmented Composites)로써 층 구조의 형태를 가지는 복합 재료를 개발하기 위해 일반 모르타르와 일반 콘크리트 블록을 이용한 보 형태의 분절 복합체 부재를 제작하여 정적하중 및 충격하중 실험을 실시하였다. 그리고 분절 복합체의 성능 및 파괴형태를 콘크리트 블록과 같은 강도로 제작된 콘크리트 보 부재와 비교하였다.

  • PDF

경계요소법과 유한요소법에 의한 흡음판의 소음저감에 관한 다영역 연성해석 (Multi-Region Structural-Acoustic Coupling Analysis on Noise Reduction of Layered Structures using Finite Element and Boundary Element Technique)

  • 주현돈;서원진;이시복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.309-313
    • /
    • 2000
  • A structural-acoustic coupling problem involving fluid in a cavity divided with flexible walls and porous materials is investigated in this paper. In many practical problems, the use of finite elements to discretize the fluid region leads to large stiffness and mass matrices. But, since the acoustic boundary element discretization requires to put elements only on the surface of structure, the size of matrices is reduced considerably. Here, we developed a numerical analysis program for the structural-acoustic coupling problems of the multi-region cavity, using boundary elements for the fluid regions and finite elements for the structure. By considering sound transmission through layered systems placed in a cavity, the accuracy of the coupled acoustical-structural finite element model has been verified by comparing its transmission loss predictions with analytical sloutions. Example problems are included to investigate the characteristics of the multi-region structural-acoustic coupling system with porous material.

  • PDF

고강도 전자소자 리드프레임용 Cu/STS/Cu 클래드 메탈제조 및 물리적특성에 대한 열안정성 연구 (Fabrication of the Cu-STS-Cu Clad Metal for High Strength Electric Device Lead Frame and Thermal Stability on Their Physical Properties)

  • 김일권;손문의;김용성
    • Journal of Welding and Joining
    • /
    • 제32권5호
    • /
    • pp.80-86
    • /
    • 2014
  • We have successfully fabricated high strengthening Cu/STS/Cu 3 layered clad metal of $70kgf/mm^2$ grade for electric device lead frame, and investigated thermal effect of the mechanical and physical properties on the Cu/STS/Cu 3 layered clad metal lead frame material at different temperatures ranging from RT to $200^{\circ}C$. The fabricated clad metal shows a good thermal stability under 6% degrading of mechanical tensile strength and hardness change at $200^{\circ}C$ and also physical properties show stable thermal and electrical conductance of over $220W/m{\cdot}K$ and 58.44% IACS upto the $200^{\circ}$. The results confirm that fabricated high strengthening Cu/STS/Cu 3 layered clad metal can be applied for the high performed electrical lead frame devices.

Study on the Mechanical Properties of TiAl Crystals Grown by a Floating Zone Method

  • Han, Chang-Suk;Kim, Sang-Wook
    • 한국재료학회지
    • /
    • 제27권7호
    • /
    • pp.369-373
    • /
    • 2017
  • Unidirectionally solidified TiAl alloys were prepared by optically-heated floating zone method at growth rates of 10 to 70 mm/h in flowing argon. The microstructures and tensile properties of these crystal bars were found to depend strongly on the growth rate and alloy composition. TiAl alloys with composition of 47 and 50 at.%Al grown under the condition of 10 mm/h showed $Ti_3Al({\alpha}_2)/TiAl({\gamma})$ layer structures similar to single crystals. As the growth rate increased, the alloys with 47 and 50 at.%Al compositions showed columnar-grain structures. However, the alloys fabricated under the condition of 10 mm/h had a layered structure, but the alloy with increased growth rate consisted of ${\gamma}$ single phase grains. The alloy with a 53 at.%Al composition showed a ${\gamma}$ single phase regardless of the growth rate. Room-temperature tensile tests of these alloys revealed that the columnar-grained material consisting of the layered structure showed a tensile ductility of larger than 4 % and relatively high strength. The high strength is caused by stress concentration at the grain boundaries; this enhances the secondary slip or deformation twinning across the layered structure in the vicinity of the grain boundaries, resulting in the appreciable ductility.

Influence of a Stacked-CuPc Layer on the Performance of Organic Light-Emitting Diodes

  • Choe Youngson;Park Si Young;Park Dae Won;Kim Wonho
    • Macromolecular Research
    • /
    • 제14권1호
    • /
    • pp.38-44
    • /
    • 2006
  • Vacuum deposited copper phthalocyanine (CuPc) was placed as a thin interlayer between indium tin oxide (ITO) electrode and a hole transporting layer (HTL) in a multi-layered, organic, light-emitting diode (OLEOs). The well-stacked CuPc layer increased the stability and efficiency of the devices. Thermal annealing after CuPc deposition and magnetic field treatment during CuPc deposition were performed to obtain a stacked-CuPc layer; the former increased the stacking density of the CuPc molecules and the alignment of the CuPc film. Thermal annealing at about 100$^{circ}C$ increased the current flow through the CuPc layer by over 25$\%$. Surface roughness decreased from 4.12 to 3.65 nm and spikes were lowered at the film surface as well. However, magnetic field treatment during deposition was less effective than thermal treatment. Eventually, a higher luminescence at a given voltage was obtained when a thermally-annealed CuPc layer was placed in the present, multi-layered, ITO/CuPc/NPD/Alq3/LiF/AI devices. Thermal annealing at about 100$^{circ}C$ for 3 h produced the most efficient, multi-layered EL devices in the present study.

3차원 조형장비 선정을 위한 효율적인 의사결정 방법 (An Efficient Decision Maki ng Method for the Selectionof a Layered Manufacturing)

  • 변홍석
    • 한국공작기계학회논문집
    • /
    • 제18권1호
    • /
    • pp.59-67
    • /
    • 2009
  • The purpose of this study is to provide a decision support to select an appropriate layered manufacturing(LM) machine that suits the application of a part. Selection factors include concept model, form/fit/functional model, pattern model far molding, material property, build time and part cost that greatly affect the performance of LM machines. However, the selection of a LM is not an easy decision because they are uncertain and vague. For this reason, the aim of this research is to propose hybrid multiple attribute decision making approaches to effectively evaluate LM machines. In addition, because subjective considerations are relevant to selection decision, a fuzzy logic approach is adopted. The proposed selection procedure consists of several steps. First, we identify LM machines that the users consider After constructing the evaluation criteria, we calculate the weights of the criteria by applying the fuzzy Analytic Hierarchy Process(AHP) method. Finally, we construct the fuzzy Technique of Order Preference by Similarity to Ideal Solution(TOPSIS) method to achieve the ranking order of all machines providing the decision information for the selection of LM machines.

Nonlinear Analysis of Reinforced and Prestressed Concrete Shells Using Layered Elements with Drilling DOF

  • 김태훈;최정호;김운학;신현목
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.645-654
    • /
    • 2005
  • This paper presents a nonlinear finite element procedure for the analysis of reinforced and prestressed concrete shells using the four-node quadrilateral flat shell element with drilling rotational stiffness. A layered approach is used to discretize, through the thickness, the behavior of concrete, reinforcing bars and tendons. Using the smeared-crack method, cracked concrete is treated as an orthotropic nonlinear material. The steel reinforcement and tendon are assumed to be in a uni-axial stress state and to be smeared in a layer. The constitutive models, which cover the loading, unloading, and reloading paths, and the developed finite element procedure predicts with reasonable accuracy the behavior of reinforced and prestressed concrete shells subjected to different types of loading. The proposed numerical method fur nonlinear analysis of reinforced and prestressed concrete shells is verified by comparison with reliable experimental results.