• Title/Summary/Keyword: Layered Structures

Search Result 503, Processing Time 0.026 seconds

Flutter phenomenon in composite sandwich beams with flexible core under follower force

  • Saghavaz, Fahimeh Rashed;Payganeh, GHolamhassan;Fard, Keramat Malekzadeh
    • Steel and Composite Structures
    • /
    • v.39 no.5
    • /
    • pp.615-630
    • /
    • 2021
  • The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.

Crossover from weak anti-localization to weak localization in inkjet-printed Ti3C2Tx MXene thin-film

  • Jin, Mi-Jin;Um, Doo-Seung;Ogbeide, Osarenkhoe;Kim, Chang-Il;Yoo, Jung-Woo;Robinson, J. W. A.
    • Advances in nano research
    • /
    • v.13 no.3
    • /
    • pp.259-267
    • /
    • 2022
  • Two-dimensional (2D) transition metal carbides/nitrides or "MXenes" belong to a diverse-class of layered compounds, which offer composition- and electric-field-tunable electrical and physical properties. Although the majority of the MXenes, including Ti3C2Tx, are metallic, they typically show semiconductor-like behaviour in their percolated thin-film structure; this is also the most common structure used for fundamental studies and prototype device development of MXene. Magnetoconductance studies of thin-film MXenes are central to understanding their electronic transport properties and charge carrier dynamics, and also to evaluate their potential for spin-tronics and magnetoelectronics. Since MXenes are produced through solution processing, it is desirable to develop deposition strategies such as inkjet-printing to enable scale-up production with intricate structures/networks. Here, we systematically investigate the extrinsic negative magnetoconductance of inkjetprinted Ti3C2Tx MXene thin-films and report a crossover from weak anti-localization (WAL) to weak localization (WL) near 2.5K. The crossover from WAL to WL is consistent with strong, extrinsic, spin-orbit coupling, a key property for active control of spin currents in spin-orbitronic devices. From WAL/WL magnetoconductance analysis, we estimate that the printed MXene thin-film has a spin orbit coupling field of up to 0.84 T at 1.9 K. Our results and analyses offer a deeper understanding into microscopic charge carrier transport in Ti3C2Tx, revealing promising properties for printed, flexible, electronic and spinorbitronic device applications.

Chemical Vapor Deposition of High-Quality MoSe2 Monolayer and Its Application to van der Waals Heterostructure-Based High-Performance Field-Effect Transistors (화학기상증착법을 통한 고품질 단층 MoSe2합성 및 반데르발스 수직이종 접합 구조 기반 고성능 트랜지스터 제작)

  • Si Heon Lim;Sun Woo Kim;Seon Yeon Choi;Hyun Ho Kim
    • Journal of Adhesion and Interface
    • /
    • v.24 no.1
    • /
    • pp.36-40
    • /
    • 2023
  • A van der Waals material refers to a material having a two-dimensional layered structure composed of van der Waals bonds with weak interlayer bonding. The research based on heterojunction structures using such van der Waals two-dimensional materials has been steadily studied since the discovery of graphene. Herein, this paper reports a van der Waals heterojunction -based field-effect transistor device based on monolayer single crystalline MoSe2 grown by atmospheric pressure chemical vapor deposition. We found that MoSe2 grown under optimized process conditions did not have atomic-level defects and the transistor devices incorporating MoSe2 also showed excellent characteristics.

Assessment of geometric nonlinear behavior in composite beams with partial shear interaction

  • Jie Wen;Abdul Hamid Sheikh;Md. Alhaz Uddin;A.B.M. Saiful Islam;Md. Arifuzzaman
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.693-708
    • /
    • 2023
  • Composite beams, two materials joined together, have become more common in structural engineering over the past few decades because they have better mechanical and structural properties. The shear connectors between their layers exhibit some deformability with finite stiffness, resulting in interfacial shear slip, a phenomenon known as partial shear interaction. Such a partial shear interaction contributes significantly to the composite beams. To provide precise predictions of the geometric nonlinear behavior shown by two-layered composite beams with interfacial shear slips, a robust analytical model has been developed that incorporates the influence of significant displacements. The application of a higher-order beam theory to the two material layers results in a third-order adjustment of the longitudinal displacement within each layer along the depth of the beam. Deformable shear connectors are employed at the interface to represent the partial shear interaction by means of a sequence of shear connectors that are evenly distributed throughout the beam's length. The Von-Karman theory of large deflection incorporates geometric nonlinearity into the governing equations, which are then solved analytically using the Navier solution technique. Suggested model exhibits a notable level of agreement with published findings, and numerical outputs derived from finite element (FE) model. Large displacement substantially reduces deflection, interfacial shear slip, and stress values. Geometric nonlinearity has a significant impact on beams with larger span-to-depth ratio and a greater degree of shear connector deformability. Potentially, the analytical model can accurately predict the geometric nonlinear responses of composite beams. The model has a high degree of generality, which might aid in the numerical solution of composite beams with varying configurations and shear criteria.

Development of exothermic system based on internet of things for preventing damages in winter season and evaluation of applicability to railway vehicles

  • Kim, Heonyoung;Kang, Donghoon;Joo, Chulmin
    • Smart Structures and Systems
    • /
    • v.29 no.5
    • /
    • pp.653-660
    • /
    • 2022
  • Gravel scattering that is generated during operation of high-speed railway vehicle is cause to damage of vehicle such as windows, axle protector and so on. Especially, those are frequently occurred in winter season when snow ice is generated easily. Above all, damage of vehicle windows has not only caused maintenance cost but also increased psychological anxiety of passengers. Various methods such as heating system using copper wire, heating jacket and heating air are applied to remove snow ice generated on the under-body of vehicle. However, the methods require much run-time and man power which can be low effectiveness of work. Therefore, this paper shows that large-area heating system was developed based on heating coat in order to fundamentally prevent snow ice damage on high-speed railway vehicle in the winter season. This system gives users high convenience because that can remotely control the heating system using IoT-based wireless communication. For evaluating the applicability to railroad sites, a field test on an actual high-speed railroad operation was conducted by applying these techniques to the brake cylinder of a high-speed railroad vehicle. From the results, it evaluated how input voltage and electric power per unit area of the heating specimen influences exothermic performance to draw the permit power condition for icing. In the future, if the system developed in the study is applied at the railroad site, it may be used as a technique for preventing all types of damages occurring due to snow ice in winter.

The development of encoded porous silicon nanoparticles and application to forensic purpose (코드화 다공성 실리콘 나노입자의 개발 및 법과학적 응용)

  • Shin, Yeo-Ool;Kang, Sanghyuk;Lee, Joonbae;Paeng, Ki-Jung
    • Analytical Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.247-253
    • /
    • 2009
  • Porous silicon films are electrochemically etched from crystalline silicon wafers in an aqueous solution of hydrofluoric acid(HF). Careful control of etching conditions (current density, etch time, HF concentration) provides films with precise, reproducible physical parameters (morphology, porosity and thickness). The etched pattern could be varied due to (1) current density controls pore size (2) etching time determines depth and (3) complex layered structures can be made using different current profiles (square wave, triangle, sinusoidal etc.). The optical interference spectrum from Fabry-Perot layer has been used for forensic applications, where changes in the optical reflectivity spectrum confirm the identity. We will explore a method of identifying the specific pattern code and can be used for identities of individual code with porous silicon based encoded nanosized smart particles.

Vibroacoustic response of thin power law indexed functionally graded plates

  • Baij Nath Singh;Vinayak Ranjan;R.N. Hota
    • Steel and Composite Structures
    • /
    • v.50 no.3
    • /
    • pp.299-318
    • /
    • 2024
  • The main objective of this paper is to compute the far-field acoustic radiation (sound radiation) of functionally graded plates (FGM) loaded by sinusoidally varying point load subjected to the arbitrary boundary condition is carried out. The governing differential equations for thin functionally graded plates (FGM) are derived using classical plate theory (CPT) and Rayleigh integral using the elemental radiator approach. Four cases, segregated on power-law index k=0,1,5,10, are studied. A novel approach is illustrated to compute sound fields of vibrating FGM plates using the physical neutral surface with an elemental radiator approach. The material properties of the FGM plate for all cases are calculated considering the power law indexes. An in-house MATLAB code is written to compute the natural frequencies, normal surface velocities, and sound radiation fields are analytically calculated using semi-analytical formulation. Ansys is used to validate the computed sound power level. The parametric effects of the power law index, modulus ratios, different constituent of FGM plates, boundary conditions, damping loss factor on the sound power level, and radiation efficiency is illustrated. This work is the benchmark approach that clearly explains how to calculate acoustic fields using a solid layered FGM model in ANSYS ACT. It shows that it is possible to asymptotically stabilize the structure by controlling the intermittent layers' stiffness. It is found that sound fields radiated by the elemental radiators approach in MATLAB, ANSYS and literatures are in good agreement. The main novelty of this research is that the FGM plate is analyzed in the low-frequency range, where the stiffness-controlled region governs the whole analysis. It is concluded that a clamped mono-ceramic FGM plate radiates a lesser sound power level and higher radiation efficiency than a mono-metallic or metal-rich FGM plate due to higher stiffness. It is found that change in damping loss factor does not affect the same constituents of FGM plates but has significant effects on the different constituents of FGM plates.

Seismic response analysis of buried oil and gas pipelines-soil coupled system under longitudinal multi-point excitation

  • Jianbo Dai;Zewen Zhao;Jing Ma;Zhaocheng Wang;Xiangxiang Ma
    • Earthquakes and Structures
    • /
    • v.26 no.3
    • /
    • pp.239-249
    • /
    • 2024
  • A new layered shear continuum model box was developed to address the dynamic response issues of buried oil and gas pipelines under multi-point excitation. Vibration table tests were conducted to investigate the seismic response of buried pipelines and the surrounding soil under longitudinal multi-point excitation. A nonlinear model of the pipeline-soil interaction was established using ABAQUS finite element software for simulation and analysis. The seismic response characteristics of the pipeline and soil under longitudinal multi-point excitation were clarified through vibration table tests and simulation. The results showed good consistency between the simulation and tests. The acceleration of the soil and pipeline exhibited amplification effects at loading levels of 0.1 g and 0.2 g, which significantly reduced at loading levels of 0.4 g and 0.62 g. The peak acceleration increased with increasing loading levels, and the peak frequency was in the low-frequency range of 0 Hz to 10 Hz. The amplitude in the frequency range of 10 Hz to 50 Hz showed a significant decreasing trend. The displacement peak curve of the soil increased with the loading level, and the nonlinearity of the soil resulted in a slower growth rate of displacement. The strain curve of the pipeline exhibited a parabolic shape, with the strain in the middle of the pipeline about 3 to 3.5 times larger than that on both sides. This study provides an effective theoretical basis and test basis for improving the seismic resistance of buried oil and gas pipelines.

A Study of the Functional Improvement for Comfortable Expressway Service Areas - Metropolitan Expressway Service Areas - (고속도로 휴게소 환경개선을 위한 기능 증진 방안 연구 - 수도권 휴게소를 중심으로 -)

  • Lee, Won-Myoung;Han, Bong-Ho;Kim, Jong-Yup;Park, Seok-Cheol
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.63-76
    • /
    • 2015
  • This study was carried out to suggest improvement plans for problems with the landscape areas of highway service areas. The survey factors were land use, placement of green area and land coverage in terms of spatial and environmental property. Noise and topographic structure in detached green areas were surveyed in terms of impact factor. The status of the planting area around each service area was analysed in regards to planting structure and planting landscape. As a result, the mean of rations of land use were 81.6% building and 18.4% green areas, which were composed of 5.4% landscape area, 9.1% buffer area, etc. Planting areas as usable space accounted for only 0.7%, and the result of noise measurement was different according to the distribution of highway and service area and type of detached green area. The mean of ratio of planting area was 18.4%, which consists of 6.7% landscape planting, 3.4% other green area, 4.6% buffer area, 2.0% buffer and landscape area, 1.1% shade planting and 0.5% landscape and shade planting. Most planting areas aim at landscape appreciation and areas in which visitors can relax and gain recreation were insufficient. The planting structures of service areas were 52.2% canopy layer, 11.8% shrubs and 9.4% canopy and shrub layers, and most of the planting areas were a single layer of green area. Multi-layered planting structures in the landscape and buffer areas were required and a shade planting area was needed to improve amenities as planting canopy layered trees. This study suggested improvement methods for based environments, spatial function and planting function in landscape areas.

Organo-Compatible Gate Dielectrics for High-performance Organic Field-effect Transistors (고성능 유기 전계효과 트랜지스터를 위한 유기친화 게이트 절연층)

  • Lee, Minjung;Lee, Seulyi;Yoo, Jaeseok;Jang, Mi;Yang, Hoichang
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.219-226
    • /
    • 2013
  • Organic semiconductor-based soft electronics has potential advantages for next-generation electronics and displays, which request mobile convenience, flexibility, light-weight, large area, etc. Organic field-effect transistors (OFET) are core elements for soft electronic applications, such as e-paper, e-book, smart card, RFID tag, photovoltaics, portable computer, sensor, memory, etc. An optimal multi-layered structure of organic semiconductor, insulator, and electrodes is required to achieve high-performance OFET. Since most organic semiconductors are self-assembled structures with weak van der Waals forces during film formation, their crystalline structures and orientation are significantly affected by environmental conditions, specifically, substrate properties of surface energy and roughness, changing the corresponding OFET. Organo-compatible insulators and surface treatments can induce the crystal structure and orientation of solution- or vacuum-processable organic semiconductors preferential to the charge-carrier transport in OFET.