Browse > Article
http://dx.doi.org/10.12989/scs.2021.39.5.615

Flutter phenomenon in composite sandwich beams with flexible core under follower force  

Saghavaz, Fahimeh Rashed (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU))
Payganeh, GHolamhassan (Department of Mechanical Engineering, Shahid Rajaee Teacher Training University (SRTTU))
Fard, Keramat Malekzadeh (Aerospace research institute, Malekashtar university of Technology)
Publication Information
Steel and Composite Structures / v.39, no.5, 2021 , pp. 615-630 More about this Journal
Abstract
The main purpose of the present work was to study the dynamic instability of a three-layered, thick composite sandwich beam with the functionally graded (FG) flexible core subjected to an axial compressive follower force. Flutter instability of a sandwich cantilever beam was analyzed using the high-order theory of sandwich beams, for the first time. The governing equations in general for sandwich beams with an FG core were extracted and could be used for all types of sandwich beams with any types of face sheets and cores. A polynomial function is considered for the vertical distribution of the displacement field in the core layer along the thickness, based on the results of the first Frosting's higher order model. The governing partial differential equations and the equations of boundary conditions of the dynamic system are derived using Hamilton's principle. By applying the boundary conditions and numerical solution methods of squares quadrature, the beam flutter phenomenon is studied. In addition, the effects of different geometrical and material parameters on the flutter threshold were investigated. The results showed that the responses of the dynamic instability of the system were influenced by the follower force, the coefficients of FGs and the geometrical parameters like the core thickness. Comparison of the present results with the published results in the literature for the special case confirmed the accuracy of the proposed theory. The results showed that the follower force of the flutter phenomenon threshold for long beams tends to the corresponding results in the Timoshenko beam.
Keywords
flutter analysis; follower force; FGM core; cantilever beam; GDQ numerical method;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Nayak, B., Sastri, J.B.S., Dwivedy, S.K. and Murthy, K.S.R.K. (2012), "A Comparative Study of The Classical and Higher Order Theory for Free Vibration Analysis of MRE Cored Sandwich Beam with Composite Skins Using Finite Element method", Proceedings of the IEEE-International Conference on Advances in Engineering, Nagapattinam, Tamil Nadu, India, March.
2 Li, Q.S. (2008), "Stability of non-uniform columns under the combined action of concentrated follower forces and variably distributed loads", J. Constr. Steel Res., 64(3), 367-376. https://doi.org/10.1016/j.jcsr.2007.07.006.   DOI
3 Malekzadeh Fard, K. (2014), "Higher order free vibration of sandwich curved beams with a functionally graded core", Struct. Eng. Mech., 49(5), 537-554. https://doi.org/10.12989/sem.2014.49.5.537.   DOI
4 Malekzadeh Fard, K., Livani, M., veisi, A. and Gholami, M. (2014), "Improved high-order bending analysis of double curved sandwich panels subjected to multiple loading conditions", Latin Am. J. Solid. Struct., 11(9), 1591-1614. https://doi.org/10.1590/S1679-78252014000900006.   DOI
5 Malekzadeh, K., Khalili, M.R. and Mittal, R.K. (2005), "Local and global damped vibrations of plates with a viscoelastic soft flexible core: An improved high-order approach", J. Sandwich Struct. Mater., 7(5), 431-456. https://doi.org/10.1177/1099636205053748.   DOI
6 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019) "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002.   DOI
7 Ramteke, P.M., Mehar, K., Sharma, N. and Panda, S.K. (2020), "Numerical Prediction of Deflection and Stress Responses of Functionally Graded Structure for Grading Patterns (Power-Law, Sigmoid and Exponential) and Variable Porosity (Even and Uneven)", Scientia Iranica. http://dx.doi.org/10.24200/sci.2020.55581.4290.   DOI
8 Ramteke, P.M., Panda, S.K. and Sharma, N. (2019), "Effect of grading pattern and porosity on the eigen characteristics of porous functionally graded structure", Steel Compos. Struct., 33(6), 865-875. http://dx.doi.org/10.12989/scs.2019.33.6.865.   DOI
9 Moradi-Dastjerdi, R. and Behdinan, K. (2019) "Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene", Steel Compos. Struct., 31(5), 529-539. https://doi.org/10.12989/scs.2019.31.5.529.   DOI
10 Moradi-Dastjerdi, R. and Behdinan, k. (2020), "Stability analysis of multifunctional smart sandwich plates with graphene nanocomposite and porous layers", Int. J. Mech. Sci., 167, 105283. https://doi.org/10.1016/j.ijmecsci.2019.105283.   DOI
11 Reddy, J.N. (1998), Thermomechanical behavior of functionally graded materials, A&M University, College Station, Texas, USA.
12 Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells Theory and Analysis, (2nd Edition), CRC Press, New York, NY, USA.
13 Sawyer, J.W. (1977), "Flutter and buckling of general laminated plates", J. Aircraft, 14(4), 387-393. https://doi.org/10.2514/3.58789.   DOI
14 Safaei, B. (2020) "The effect of embedding a porous core on the free vibration behavior of laminated composite plates", Steel Compos. Struct., 35(5), 659-670. https://doi.org/10.12989/scs.2020.35.5.659.   DOI
15 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019a), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., 7(4), 265-275. http://dx.doi.org/10.12989/anr.2019.7.4.265.   DOI
16 Safaei, B., Moradi-Dastjerdi, R., Qin, Z., Behdinan, K. and Chu, F. (2019b) "Determination of thermoelastic stress wave propagation in nanocomposite sandwich plates reinforced by clusters of carbon nanotubes", J. Sandw. Struct. Mater., https://doi.org/10.1177/1099636219848282.   DOI
17 Sahmani, S. and Safaei, B. (2021), "Large-amplitude oscillations of composite conical nanoshells with in-plane heterogeneity including surface stress effect", Appl. Math. Model., 89, 1792-1813. https://doi.org/10.1016/j.apm.2020.08.039.   DOI
18 Moradi-Dastjerdi, R., Behdinan, k., Safaei, B. and Qin, Z. (2020a), "Buckling behavior of porous CNT-reinforced plates integrated between active piezoelectric layers", Eng. Struct., 222, 111141. https://doi.org/10.1016/j.engstruct.2020.111141.   DOI
19 Meunier, M. and Shenoi, R.A. (1999), "Free vibration analysis of composite sandwich plates", J. Mech. Eng. Sci., 213(7), 715-727. https://doi.org/10.1177/095440629921300707.   DOI
20 Pourasghar, A. and Kamarian, S. (2015), "Dynamic stability analysis of functionally graded nanocomposite non-uniform column reinforced by carbon nanotube", J. Vib. Control, 21(13), 2499-2508. https://doi.org/10.1177/1077546313513625.   DOI
21 Shen, H.S. and Li, S.R. (2008), "Postbuckling of sandwich plates with FGM face sheets and temperature-dependent properties", Compos. Part B: Eng., 39(2), 332-344. https://doi.org/10.1016/j.compositesb.2007.01.004.   DOI
22 Sahoo, R. and Singh, B.N. (2015), "Dynamic Instabilit of laminated-Composite and sandwich plate using a new inverse Trigonometric Zigzag Theory", J. Vib. Acoust., 137(6), 061001. https://doi.org/10.1115/1.4030716.   DOI
23 Sarath Babu, C. and Kant, T. (1999), "Two shear deformable finite element models for buckling analysis of skew fiber-reinforced composite and sandwich panels", Compos. Struct., 46(2), 115-124. https://doi.org/10.1016/S0263-8223(99)00039-2.   DOI
24 Sharma, N., Mahapatra, T.R., Panda, S.K. and Mehar, K. (2018), "Evaluation of vibroacoustic responses of laminated composite sandwich structure using higher-order finite-boundary element model", Steel Compos. Struct., 28(5), 629-639. DOI: http://dx.doi.org/10.12989/scs.2018.28.5.629.   DOI
25 Shen, H.S. and Xia, X.K. (2008), "Vibration of post-buckled sandwich plates with FGM face sheets in a thermal environment", J. Sound Vib., 314(1-2), 254-274. https://doi.org/10.1016/j.jsv.2008.01.019.   DOI
26 Simitses, G.J. and Hodges, D.H. (2006), Fundamentals of Structural Stability, Butterworth-Heinemann Limited, Oxford, UK, England.
27 Smyczynski, M.J. and Magnucka-Blandzi, E. (2015), "Static and dynamic stability of an axially compressed five-layer sandwich beam", Thin-Wall. Struct., 90, 23-30. https://doi.org/10.1016/j.tws.2015.01.005.   DOI
28 Wang, Q. (2003), "On complex flutter and buckling analysis of a beam structure subjected to static follower force", Struct. Eng. Mech., 16(5), 533-556. https://doi.org/10.12989/sem.2003.16.5.533.   DOI
29 Ferreira, A.J.M., Batra, R.C., Roque, C.M.C., Qian, L.F. and Jorge, R.M.N. (2006), "Natural frequencies of functionally graded plates by a meshless method", Compos. Struct., 75(1-4), 593-600. https://doi.org/10.1016/j.compstruct.2006.04.018.   DOI
30 Fattahi, A.M., Safaei, B. and Moaddab, E. (2019b), "The application of nonlocal elasticity to determine vibrational behavior of FG nanoplates", Steel Compos. Struct., 32(2), 281-292. http://dx.doi.org/10.12989/scs.2019.32.2.281.   DOI
31 Foroutan, M., Moradi-Dastjerdi, R. and Sotoodeh-Bahreini, R. (2012), "Static analysis of FGM cylinders by a mesh-free method", Steel Compos. Struct., 12(1), 1-11. https://doi.org/10.12989/scs.2012.12.1.001.   DOI
32 Frostig, Y. and Thomsen, O.T. (2004), "High-order free vibrations of sandwich panels with a flexible core", Int. J. Solid. Struct., 41(5-6), 1697-1724. https://doi.org/10.1016/j.ijsolstr.2003.09.051.   DOI
33 Kahya, V. and Turan, M. (2018) "Vibration and buckling of laminated beams by a multi-layer finite element model", Steel Compos. Struct., 28(4), 415-426. https://doi.org/10.12989/scs.2018.28.4.415.   DOI
34 Sun, W., Ding, ZH., Qin, ZH., Chu, F. and Han, Q. (2020), "Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators", Nano Energy, 70, 104526. https://doi.org/10.1016/j.nanoen.2020.104526.   DOI
35 Trahair, N.S. (2014), "Bending and buckling of tapered steel beam structures", Eng. Struct., 59, 229-237. https://doi.org/10.1016/j.engstruct.2013.10.031.   DOI
36 Delale, F. and Erdogan, F. (1993), "The crack problem for a nonhomogeneous plane," J. Appl. Mech., 50(3), 609-614. http://doi.org/10.1115/1.3167098.   DOI
37 Nikolai, E. L. (1928), On the Stability of the Rectilinear Form of Equilibrium of a Bar in Compression and Torsion, Leningrad Polytekhn: Inv.
38 Ganapathi, M. and Varadan, T.K. (1995), "Supersonic flutter of laminated curved panels", Defence Sci. J., 45(2), 147-159. https://doi.org/10.14429/dsj.45.4114.   DOI
39 Gao, W., Qin, Z. and Chu, F. (2020) "Wave propagation in functionally graded porous plates reinforced with graphene platelets", Aerosp. Sci. Technol., 102, 105860. https://doi.org/10.1016/j.ast.2020.105860.   DOI
40 Goyala, V.K. and Kapania, R.K. (2008), "Dynamic stability of laminated beams subjected to non-conservative loading", Thin-Wall. Struct., 46(12), 1359-1369. https://doi.org/10.1016/j.tws.2008.03.014.   DOI
41 Qin, Z., Safaei, B., Pang, X. and Chu, F. (2019a) "Traveling wave analysis of rotating functionally graded graphene platelet reinforced nanocomposite cylindrical shells with general boundary conditions", Results in Phys., 15, 102752. https://doi.org/10.1016/j.rinp.2019.102752.   DOI
42 Tornabene, F., Fantuzzi, N. and Bacciocchi, M. (2014), "Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories", Compos. Part B: Eng., 67, 490-509. https://doi.org/10.1016/j.compositesb.2014.08.012.   DOI
43 Noor, A.K., Peters, J.M. and Burton, W.S. (1994), "Three-dimensional solutions for initially stressed structural sandwiches", J. Eng. Mech. - ASCE, 120(2), 284-303. https://doi.org/10.1061/(ASCE)0733-9399(1994)120:2(284).   DOI
44 Park, w.t., Han, S.CH., Jung, W.H. and Lee, W.H. (2016), "Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory", Steel Compos. Struct., 22(6), 1239-1259. https://doi.org/10.12989/scs.2016.22.6.1239.   DOI
45 Phan, Duc.H. and Kobayshi, H. (2013), "Analytical and experimental study on aerodynamic control of flutter and buffeting of bridge deck by using mechanically driven flaps", Struct. Eng. Mech., 46(4), 549-569. https://doi.org/10.12989/sem.2013.46.4.549.   DOI
46 Qin, Z., Chu, F. and Zu, J. (2017) "Free vibrations of cylindrical shells with arbitrary boundary conditions: A comparison study", Int. J. Mech. Sci., 133, 91-99. https://doi.org/10.1016/j.ijmecsci.2017.08.012.   DOI
47 Qin, Z., Yang, Z., Zu, J. and Chu, F. (2018) "Free vibration analysis of rotating cylindrical shells coupled with moderately thick annular plates", Int. J. Mech. Sci., 142-143, 127-139. https://doi.org/10.1016/j.ijmecsci.2018.04.044.   DOI
48 Katariya, P.V. and Panda, S.K. (2019) "Frequency and Deflection Responses of Shear Deformable Skew Sandwich Curved Shell Panel: A Finite Element Approach", Arabian J. Sci. Eng., 44(2), 1631-1648. https://doi.org/10.1007/s13369-018-3633-0.   DOI
49 Deng, H.Q., Li, T.J, Xue, B.J and Wang, Z.W. (2015), "Analysis of thermally induced vibration of cable-beam structures", Constr. Steel Res., 53(3), 443-453. https://doi.org/10.12989/sem.2015.53.3.443.   DOI
50 Du, H., Lim, M.K. and Lim, R.M. (1994) "Application of generalized differential quadrature method to structural problems", Numer. Method. Eng., 37, 1881-1896. https://doi.org/10.1002/nme.1620371107.   DOI
51 Kar, R.C. and Hauger, W. (1982), "Stability of a pretwisted tapered cantilever beam subjected to dissipative and follower forces", J. Sound Vib., 81(4), 565-573. https://doi.org/10.1016/0022-460X(82)90297-8.   DOI
52 Katariya, P.V., Panda, S.K. and Thakare, O. (2018) "Bending and vibration analysis of skew sandwich plate", Aircraft Eng. Aerosp. Technol., 90(6), 885-895. https://doi.org/10.1108/AEAT-05-2016-0087.   DOI
53 Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2019b) "Free vibration analysis of rotating functionally graded CNT reinforced composite cylindrical shells with arbitrary boundary conditions", Compos. Struct., 220, 847-860. https://doi.org/10.1016/j.compstruct.2019.04.046.   DOI
54 Qin, Z., Zhao, S., Pang, X., Safaei, B. and Chu, F. (2020) "A unified solution for vibration analysis of laminated functionally graded shallow shells reinforced by graphene with general boundary conditions", Int. J. Mech. Sci., 170, 105341. https://doi.org/10.1016/j.ijmecsci.2019.105341.   DOI
55 Katariya, P.V. and Panda, S.K. (2020) "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.   DOI
56 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017) "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595.   DOI
57 Katariya, P.V., Hirwani, C.k. and Panda, S.K. (2019) "Geometrically nonlinear deflection and stress analysis of skew sandwich shell panel using higher-order theory", Eng. Comput., 35, 467-485. https://doi.org/10.1007/s00366-018-0609-3.   DOI
58 Fattahi, A.M., Safaei, B. And Ahmed, N.A. (2019a), "A comparison for the non-classical plate model based on axial buckling of single-layered graphene sheets", Eur. Phys. J. Plus, 134(11), 555. https://doi.org/10.1140/epjp/i2019-12912-7.   DOI
59 Dwivedy, S.K., Sahu, K.C. and Babu. SK. (2007), "Parametric instability regions of three layered soft-cored sandwich beam using higher order theory", J. Sound Vib., 304(1-2), 326-344. https://doi.org/10.1016/j.jsv.2007.03.016.   DOI
60 Eltaher, M.A. and Mohamed, S.A. (2020), "Buckling and stability analysis of sandwich beams subjected to varying axial loads", Steel Compos. Struct., 34(2), 241-260. https://doi.org/10.12989/scs.2020.34.2.241.   DOI
61 Wang, X. and Wang, Y. (2004) "Free vibration analyses of thin sector plates by the new version of differential quadrature method", Comput. Method. Appl. M., 193(36-38), 3957-3971. https://doi.org/10.1016/j.cma.2004.02.010.   DOI
62 Kheirikhah, M.M., Khalili, S.M.R. and Malekzadeh Fard, K. (2012), "Analytical solution for bending analysis of soft-core composite sandwich plates using improved high-order theory", Struct. Eng. Mech., 44(1), 15-34. https://doi.org/10.12989/sem.2012.44.1.015.   DOI
63 Kim, N.I. and Lee, J. (2014), "Divergence and flutter behavior of Beck's type of laminated box beam", Int. J. Mech. Sci., 84, 91-101. https://doi.org/10.1016/j.ijmecsci.2014.04.014.   DOI
64 Leipholz, H.H.E. (1972), "On the sufficiency of the energy criterion for the stability of certain nonconservative systems of the follower-load type", J. Appl. Mech., 39(3), 717-722. https://doi.org/10.1115/1.3422778.   DOI
65 Xiao, Q.X, Zou, J., Lee, K.Y and Li, X.F. (2017), "Surface effects on flutter instability of nanorod under generalized follower force", Struct. Eng. Mech., 64(6), 723-730. https://doi.org/10.12989/sem.2017.64.6.723.   DOI
66 Xu, K., Yuan, Y. and Li, M. (2019), "Buckling behavior of functionally graded porous plates integrated with laminated composite faces sheets", Steel Composite Structures, 32(5), 633-642. https://doi.org/10.12989/scs.2019.32.5.633.   DOI
67 Yas, M.H., Kamarian, S. and Pourasghar, A. (2017), "Free vibration analysis of functionally graded beams resting on variable elastic foundations using a generalized power-law distribution and GDQ method", Annals of Solid and Structural Mechanics volume, 9(6), 1-11. https://doi.org/10.1007/s12356-017-0046-9   DOI
68 Beck, M. (1952), "Die Knicklast des einseitig eingespannten, tangential gedruckten Stabes (The buckling load of the cantilever column subjected to tangential force)", Zeitsehrift fur angexvandte Malliematik und Physik ZAMP, 3, 225-228. https://doi.org/10.1007/BF02008828.   DOI
69 Moradi-Dastjerdi, R., Behdinan, k., Safaei, B. and Qin, Z. (2020b), "Static performance of agglomerated CNT-reinforced porous plates bonded with piezoceramic faces", Int. J. Mech. Sci., 188, 105966. https://doi.org/10.1016/j.ijmecsci.2020.105966.   DOI
70 Ma, R., Wei, J.Z., Tan, H.F. and Yang, Z.H. (2018), "Modal analysis of inflated membrane cone considering pressure follower force effect", Thin-Wall. Struct., 132, 596-603. https://doi.org/10.1016/j.tws.2018.09.007.   DOI
71 Alidoost, H. and Rezaeepazhand, J. (2017), "Instability of a delaminated composite beam subjected to a concentrated follower force", Thin-Wall. Struct., 120, 191-202. https://doi.org/10.1016/j.tws.2017.08.032.   DOI
72 Alkhaldi, H.S., Alshaikh, I.A., Mallouh, R.A. and Ghazal, O. (2014), "Closed-form solution of large deflection of a springhinged beam subjected to non-conservative force and tip end moment", Eur. J. Mech. - A/Solids, 47, 271-279. https://doi.org/10.1016/j.euromechsol.2014.02.019.   DOI
73 Asgari, GH., Payganeh, GH. and Malekzadeh Fard, K. (2019), "Dynamic instability and free vibration behavior of three-layered soft-cored sandwich beams on nonlinear elastic foundations", Struct. Eng. Mech., 72(4), 525-540. https://doi.org/10.12989/sem.2019.72.4.525.   DOI
74 Khalili, S.M.R., Tafazoli, S. and Malekzadeh Fard, K. (2011), "Free vibrations of laminated composite shells with uniformly distributed attached mass using higher order shell theory including stiffness effect", J. Sound Vib., 330(26), 6355-6371. https://doi.org/ 10.1016/j.jsv.2011.07.004.   DOI
75 Li, H., Wu, T., Gao, Z., Wang, X., Ma, H., Han, Q. and Qin, Z. (2020), "An iterative method for identification of temperature and amplitude dependent material parameters of fiber-reinforced polymer composites", Int. J. Mech. Sci., 184, 105818. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105818.   DOI
76 Behdinan, K., Moradi-Dastjerdi, R., Safaei, B., Qin, Z., Chu, F. and Hui, D. (2020) "Graphene and CNT impact on heat transfer response of nanocomposite cylinders", Nanotech. Rev., 9(1), 41-52. https://doi.org/10.1515/ntrev-2020-0004.   DOI
77 Chang, S. (2012), Differential quadrature and its application in engineering, Springer Science & Business Media.
78 Ghanati, P. and Safaei, B. (2019), "Elastic buckling analysis of polygonal thin sheets under compression", Indian J. Phys., 93(1), 47-52. https://doi.org/10.1007/s12648-018-1254-9.   DOI
79 Li, Q., Iu, V.P. and Kou, K.P. (2008), "Three-dimensional vibration analysis of functionally graded material sandwich plates", J. Sound Vib., 311(1-2), 498-515. https://doi.org/10.1016/j.jsv.2007.09.018.   DOI
80 Dash, S., Mehar, K., Sharma, N., Mahapatra, T.R. and Panda, S.K. (2018), "Modal analysis of FG sandwich doubly curved shell structure", Struct. Eng. Mech., 68(6), 721-733. http://doi.org/10.12989/sem.2018.68.6.721.   DOI