• Title/Summary/Keyword: Layered Flow

Search Result 172, Processing Time 0.025 seconds

Comparative study of laminar and turbulent models for three-dimensional simulation of dam-break flow interacting with multiarray block obstacles (다층 블록 장애물과 상호작용하는 3차원 댐붕괴흐름 모의를 위한 층류 및 난류 모델 비교 연구)

  • Chrysanti, Asrini;Song, Yangheon;Son, Sangyoung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1059-1069
    • /
    • 2023
  • Dam-break flow occurs when an elevated dam suddenly collapses, resulting in the catastrophic release of rapid and uncontrolled impounded water. This study compares laminar and turbulent closure models for simulating three-dimensional dam-break flows using OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) model, specifically the k-ε model, is employed to capture turbulent dissipation. Two scenarios are evaluated based on a laboratory experiment and a modified multi-layered block obstacle scenario. Both models effectively represent dam-break flows, with the turbulent closure model reducing oscillations. However, excessive dissipation in turbulent models can underestimate water surface profiles. Improving numerical schemes and grid resolution enhances flow recreation, particularly near structures and during turbulence. Model stability is more significantly influenced by numerical schemes and grid refinement than the use of turbulence closure. The k-ε model's reliance on time-averaging processes poses challenges in representing dam-break profiles with pronounced discontinuities and unsteadiness. While simulating turbulence models requires extensive computational efforts, the performance improvement compared to laminar models is marginal. To achieve better representation, more advanced turbulence models like Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS) are recommended, necessitating small spatial and time scales. This research provides insights into the applicability of different modeling approaches for simulating dam-break flows, emphasizing the importance of accurate representation near structures and during turbulence.

Experimental Study on Millimeter Scale Two Phase Catalytic Reactor (밀리미터 스케일의 이상 분해 반응기에 대한 실험적 연구)

  • Cho, Chung-Hun;Lee, Dae-Hoon;Kwon, Se-JIn
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.265-270
    • /
    • 2004
  • Experiment study on a down scaled two-phase catalytic reactor is presented. As a preliminary step for the development of catalytic reactor, nano-particulate catalyst was prepared. Perovskite La$\_$0.8/Sr$\_$0.2/CoO$_3$is chosen and synthesized as a catalyst considering superior catalytic performance in reduction and oxidation process where oxygen is involved among the reagent. Reactor that has a scale of 2${\times}$10${\times}$25mm was made by machining of A1 block as a layered structure considering further extension to micro-machining. Hydrogen peroxide of 70wt% was adopted as reactant and was provided to the reactor loaded with 1.5 g of catalyst. Reactant flow rate was varied by precision pump with a range of 0.15cc/min to 17.2cc/min. Temperature distribution within reactor was recorded by 3 thermocouples and total amount of liquid product was measured. Temperature distribution and factors that affect temperature were observed and relation between temperature distribution and production rate was also analyzed. Relative time scale plays a significant role in the performance of the reactor. To obtain steady state operation, appropriate ratio of flow rate, catalyst mass and reactor geometry is required and furthermore to get more efficient production rate temperature distribution should be evenly distributed. The database obtained by the experiment will be used as a design parameter for micro reactor.

Molecular Beam Epitaxial Growth of Oxide Single Crystal Films

  • Yoon, Dae-Ho;Yoshizawa, Masahito
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.508-508
    • /
    • 1996
  • ;The growth of films have considerable interest in the field of superlattice structured multi-layer epitaxy led to realization of new devices concepts. Molecular beam epitaxy (MBE) with in situ observation by reflection high-energy electron diffraction (RHEED) is a key technology for controlled layered growth on the atomic scale in oxide crystal thin films. Also, the combination of radical oxygen source and MBE will certainly accelerate the progress of applications of oxides. In this study, the growth process of single crystal films using by MBE method is discussed taking the oxide materials of Bi-Sr-Ca-Cu family. Oxidation was provided by a flux density of activated oxygen (oxygen radicals) from an rf-excited discharge. Generation of oxygen radicals is obtained in a specially designed radical sources with different types (coil and electrode types). Molecular oxygen was introduced into a quartz tube through a variable leak valve with mass flowmeter. Corresponding to the oxygen flow rate, the pressure of the system ranged from $1{\;}{\times}{\;}10^{-6}{\;}Torr{\;}to{\;}5{\;}{\times}{\;}10^{-5}$ Torr. The base pressure was $1{\;}{\times}{\;}10^{-10}$ Torr. The growth of Bi-oxides was achieved by coevaporation of metal elements and oxygen. In this way a Bi-oxide multilayer structure was prepared on a basal-plane MgO or $SrTiO_3$ substrate. The grown films compiled using RHEED patterns during and after the growth. Futher, the exact observation of oxygen radicals with MBE is an important technology for a approach of growth conditions on stoichiometry and perfection on the atomic scale in oxide. The oxidization degree, which is determined and controlled by the number of activated oxygen when using radical sources of two types, are utilized by voltage locked loop (VLL) method. Coil type is suitable for oxygen radical source than electrode type. The relationship between the flux of oxygen radical and the rf power or oxygen partial pressure estimated. The flux of radicals increases as the rf power increases, and indicates to the frequency change having the the value of about $2{\times}10^{14}{\;}atoms{\;}{\cdots}{\;}cm^{-2}{\;}{\cdots}{\;}S^{-I}$ when the oxygen flow rate of 2.0 seem and rf power 150 W.150 W.

  • PDF

Statistical Qualitative Analysis on Chemical Mechanical Polishing Process and Equipment Characterization

  • Hong, Sang-Jeen;Hwang, Jong-Ha;Seo, Dong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.3
    • /
    • pp.115-118
    • /
    • 2011
  • Process characterization of the chemical mechanical polishing (CMP) process for undensified phosphosilicate glass (PSG) film is reported using design of experiments (DOE). DOE has been addressed to experimenters to understand the relationship between input variables and responses of interest in a simple and efficient way. It is typically beneficial for determining the adequate size of experiments with multiple process variables and making statistical inferences for the responses of interests. Equipment controllable parameters to operate the machine include the down force (DF) of the wafer carrier, pressure on the backside of the wafer, table and spindle speed (SS), slurry flow rate, and pad condition. None of them is independent; thus, the interaction between parameters also needs to be indicated to improve process characterization in CMP. In this paper, we have selected the five controllable equipment parameters, such as DF, back pressure (BP), table speed (TS), SS, and slurry flow (SF), most process engineers recommend to characterize the CMP process with respect to material removal rate (RR) and film uniformity as a percentage. The polished material is undensified PSG. PSG is widely used for the plananization in multi-layered metal interconnects. We identify the main effect of DF, BP, and TS on both RR and film uniformity, as expected, by the statistical modeling and analysis on the metrology data acquired from a series of $2^{5-1}$ fractional factorial design with two center points. This revealed the film uniformity of the polished PSG film contains two and three-way interactions. Therefore, one can easily infer that the process control based on better understanding of the process is the key to success in semiconductor manufacturing, typically when the wafer size reaches 300 mm and is continuously scheduled to expand up to 450 mm in or little after 2012.

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases

  • Ahmad, Qazi Adnan;Wu, Guochen;Zong, Zhaoyun;Wu, Jianlu;Ehsan, Muhammad Irfan;Du, Zeyuan
    • Geomechanics and Engineering
    • /
    • v.23 no.4
    • /
    • pp.327-338
    • /
    • 2020
  • The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.

Analysis of Solute Transport with Steady State Groundwater Flow in Layered Aquifer (정상 지하수흐름을 갖는 층상대수층에서의 용질이동해석)

  • Lee, Seung-Han;Jeong, Il-Mun
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.1
    • /
    • pp.23-34
    • /
    • 1997
  • The Nanji-Do ladnfill is an ill-conditioned reclaimed land without pollution intercepting facilities, and has high ground water table and deep stratum. The purpose of this study is to analyze the solute transport in steady-state groundwater flow and to predict the solute dispersion in Nanji-Do landfill using HST-3D model. As results, the groundwater flows radially outward from the center of No. 1 and No. 2 landfills, and large amount of runoff is moved into Han River. The predicted relative concentration of total dissolved solute(TDS) at two years later was 0.25 in the weathering zone, 0.26 in the lower alluvium, and 0.28 in the upper alluvium. Thus, the further pollution to bottom rock and Han River was predicted by comparing the corresponding present values of 0.29, 0.32 and 0.35.

  • PDF

Estimation of BOD in wastewater treatment plant by using different ANN algorithms

  • BAKI, Osman Tugrul;ARAS, Egemen
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.455-462
    • /
    • 2018
  • The measurement and monitoring of the biochemical oxygen demand (BOD) play an important role in the planning and operation of wastewater treatment plants. The most basic method for determining biochemical oxygen demand is direct measurement. However, this method is both expensive and takes a long time. A five-day period is required to determine the biochemical oxygen demand. This study has been carried out in a wastewater treatment plant in Turkey (Hurma WWTP) in order to estimate the biochemical oxygen demand a shorter time and with a lower cost. Estimation was performed using artificial neural network (ANN) method. There are three different methods in the training of artificial neural networks, respectively, multi-layered (ML-ANN), teaching learning based algorithm (TLBO-ANN) and artificial bee colony algorithm (ABC-ANN). The input flow (Q), wastewater temperature (t), pH, chemical oxygen demand (COD), suspended sediment (SS), total phosphorus (tP), total nitrogen (tN), and electrical conductivity of wastewater (EC) are used as the input parameters to estimate the BOD. The root mean squared error (RMSE) and the mean absolute error (MAE) values were used in evaluating performance criteria for each model. As a result of the general evaluation, the ML-ANN method provided the best estimation results both training and test series with 0.8924 and 0.8442 determination coefficient, respectively.

A New Approach to Short-term Price Forecast Strategy with an Artificial Neural Network Approach: Application to the Nord Pool

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1480-1491
    • /
    • 2015
  • In new deregulated electricity market, short-term price forecasting is key information for all market players. A better forecast of market-clearing price (MCP) helps market participants to strategically set up their bidding strategies for energy markets in the short-term. This paper presents a new prediction strategy to improve the need for more accurate short-term price forecasting tool at spot market using an artificial neural networks (ANNs). To build the forecasting ANN model, a three-layered feedforward neural network trained by the improved Levenberg-marquardt (LM) algorithm is used to forecast the locational marginal prices (LMPs). To accurately predict LMPs, actual power generation and load are considered as the input sets, and then the difference is used to predict price differences in the spot market. The proposed ANN model generalizes the relationship between the LMP in each area and the unconstrained MCP during the same period of time. The LMP calculation is iterated so that the capacity between the areas is maximized and the mechanism itself helps to relieve grid congestion. The addition of flow between the areas gives the LMPs a new equilibrium point, which is balanced when taking the transfer capacity into account, LMP forecasting is then possible. The proposed forecasting strategy is tested on the spot market of the Nord Pool. The validity, the efficiency, and effectiveness of the proposed approach are shown by comparing with time-series models

Evaluation of Filter Capacity for Sea Dyke Slope Filter Layer by In-situ Rainfall Test (현장 강우재현시험을 통한 방조제 사면필터층의 필터성능분석)

  • Oh, Young-In;Kim, Seo-Ryong;Yoo, Jeon-Yong;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.828-837
    • /
    • 2006
  • Geotextiles consist of three major types of geosynthetic material (woven, non-woven and composite) and the functions of geotextiles are separation, reinforcement, filtration, drainage and as a moisture barrier. Although the many research scholar and engineer developed and established the design criteria and construction methodology, sustainable research still needed for optimum design methodology to the complicate field conditions. In this study, in-situ rainfall test performed to develop suitable filter system for sea dyke upper slope filter layer. In-situ rainfall test conducted for seven different filter system and measured the infiltration flux and pore pressure at various filter layer. Based on the test results, the double layered geotextile filter and sand transition system is most suitable for sea dyke upper filter layer because which system is effective for drainage of infiltration flow and minimize the deformation of sea dyke cover stone.

  • PDF

Non-linear aero-elastic response of a multi-layer TPS

  • Pasolini, P.;Dowell, E.H.;Rosa, S. De;Franco, F.;Savino, R.
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.4
    • /
    • pp.449-465
    • /
    • 2017
  • The aim of the present work is to present a computational study of the non-linear aero-elastic behavior of a multi-layered Thermal Protection System (TPS). The severity of atmospheric re-entry conditions is due to the combination of high temperatures, high pressures and high velocities, and thus the aero-elastic behavior of flexible structures can be difficult to assess. In order to validate the specific computational model and the overall strategy for structural and aerodynamics analyses of flexible structures, the simplified TPS sample tested in the 8' High Temperature Tunnel (HTT) at NASA LaRC has been selected as a baseline for the validation of the present work. The von $K{\acute{a}}rm{\acute{a}}n^{\prime}s$ three dimensional large deflection theory for the structure and a hybrid Raleigh-Ritz-Galerkin approach, combined with the first order Piston Theory to describe the aerodynamic flow, have been used to derive the equations of motion. The paper shows that a good description of the physical behavior of the fabric is possible with the proposed approach. The model is further applied to investigate structural and aero-elastic influence of the number of the layers and the stitching pattern.