Browse > Article
http://dx.doi.org/10.12989/gae.2020.23.4.327

A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases  

Ahmad, Qazi Adnan (Department of Geology and Geophysics, Bacha Khan University Charsadda)
Wu, Guochen (China University of Petroleum (East China), School of Geoscience Qingdao)
Zong, Zhaoyun (China University of Petroleum (East China), School of Geoscience Qingdao)
Wu, Jianlu (China University of Petroleum (East China), School of Geoscience Qingdao)
Ehsan, Muhammad Irfan (Institute of Geology University of the Punjab)
Du, Zeyuan (China University of Petroleum (East China), School of Geoscience Qingdao)
Publication Information
Geomechanics and Engineering / v.23, no.4, 2020 , pp. 327-338 More about this Journal
Abstract
The role of precise prediction of subsurface fluids and discrimination among them cannot be ignored in reservoir characterization and petroleum prospecting. A suitable rock physics model should be build for the extraction of valuable information form seismic data. The main intent of current work is to present a rock physics model to analyze the characteristics of seismic wave propagating through a cracked porous rock saturated by a three phase fluid. Furthermore, the influence on wave characteristics due to variation in saturation of water, oil and gas were also analyzed for oil and water as wet cases. With this approach the objective to explore wave attenuation and dispersion due to wave induce fluid flow (WIFF) at seismic and sub-seismic frequencies can be precisely achieved. We accomplished our proposed approach by using BISQ equations and by applying appropriate boundary conditions to incorporate heterogeneity due to saturation of three immiscible fluids forming a layered system. To authenticate the proposed methodology, we compared our results with White's mesoscopic theory and with the results obtained by using Biot's poroelastic relations. The outcomes reveals that, at low frequencies seismic wave characteristics are in good agreement with White's mesoscopic theory, however a slight increase in attenuation at seismic frequencies is because of the squirt flow. Moreover, our work crop up as a practical tool for the development of rock physical theories with the intention to identify and estimate properties of different fluids from seismic data.
Keywords
exploration geophysics; mathematical geophysics; seismic methods; seismology; waves and wave analysis; geomechanics measurements and monitoring;
Citations & Related Records
Times Cited By KSCI : 16  (Citation Analysis)
연도 인용수 순위
1 Elyasi, A., Goshtasbi, K. and Hashemolhosseini, H. (2016), "A coupled geomechanical reservoir simulation analysis of CO2 - EOR: A case study", Geomech. Eng., 10(4), 423-436. https://doi.org/10.12989/gae.2016.10.4.423.   DOI
2 Frehner, M. and Quintal, B. (2012), Physical Mechanisms for low-Frequency Seismic Wave Attenuation in Fractured Media.
3 Guo, Z.Q., Liu, C. and Li, X.Y. (2015), "Seismic signatures of reservoir permeability based on the patchy-saturation model", Appl. Geophys., 12, 187-198. https://doi.org/10.1007/s11770-015-0480-6.   DOI
4 Haghnejad, A., Ahangari, K., Moarefvand, P. and Goshtasbi, K. (2018), "Numerical investigation of the impact of geological discontinuities on the propagation of ground vibrations", Geomech. Eng., 14(6), 545-552. https://doi.org/10.12989/gae.2018.14.6.545.   DOI
5 Hefner, B.T. and Jackson, D.R. (2010), "Dispersion and attenuation due to scattering from heterogeneities of the frame bulk modulus of a poroelastic medium", J. Acoust. Soc. Am., 127, 3372-3384. https://doi.org/10.1121/1.3365316.   DOI
6 Hui, M.H. and Blunt, M.J. (2000), "Effects of wettability on three-phase flow in porous media", J. Phys. Chem., 104(16), 3833-3845. https://doi.org/10.1021/jp9933222.   DOI
7 Jiang, L., Zhao, Y., Golsanami, N., Chen, L. and Yan, W. (2020), "A novel type of neural networks for feature engineering of geological data: Case studies of coal and gas hydrate-bearing sediments", Geosci. Front., 11, 1511-1531. https://doi.org/10.1016/j.gsf.2020.04.016.   DOI
8 Johnson, D.L. (2001), "Theory of frequency dependent acoustics in patchy-saturated porous media", J. Acoust. Soc. Am., 110(2), 682. https://doi.org/10.1121/1.1381021.   DOI
9 Jones, T.D. (1986), "Pore fluids and frequency-dependent in rocks wave propagation", Geophysics, 51(10), 1879-2018. https://doi.org/10.1190/1.1442050.   DOI
10 Kumar, K.V., Saravanan, T.J., Sreekala, R., Gopalakrishnan, N. and Mini, K.M. (2017), "Structural damage detection through longitudinal wave propagation using spectral finite element method", Geomech. Eng., 12(1), 161-183, https://doi.org/10.12989/gae.2017.12.1.161.   DOI
11 Li, X. and Tao, M. (2015), "The influence of initial stress on wave propagation and dynamic elastic coefficients", Geomech. Eng., 8(3), 377-390. https://doi.org/10.12989/gae.2015.8.3.377.   DOI
12 Manna, S., Misra, J.C., Kundu, S. and Gupta, S. (2018), "Surface wave propagation in an initially stressed heterogeneous medium having a sandy layer and a point source", Geomech. Eng., 16(2), 169-176. https://doi.org/10.12989/gae.2018.16.2.169.   DOI
13 Mavko, G. and Nur, A. (1975), "Melt squirt in the asthenosphere", J. Geophys. Res., 80, 1444-1448. https://doi.org/10.1029/JB080i011p01444.   DOI
14 Mavko, G., Mukerji, T. and Dvorkin, J. (1998), The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, Cambridge University Press, Cambridge, U.K.
15 Mavko, G.M. and Nut, A. (1979), "Wave attenuation in partially saturated rocks", Geophysics, 44(2), 161-178. https://doi.org/10.1190/1.1440958.   DOI
16 Muller, T.M., Gurevich, B. and Lebedev, M. (2010), "Seismic wave attenuation and dispersion resulting from wave-induced flow in porous rocks - A review", 75(5), 75A147-75A164. https://doi.org/10.1190/1.3463417.   DOI
17 Pride, S. and Berryman, J.G. (2003), "Linear dynamics of double-porosity dual- permeability materials I. Governing equations and acoustic attenuation", Phys. Rev. E, 68(3), 036603. https://doi.org/10.1103/PhysRevE.68.036603.   DOI
18 Pride, S., Berryman, J.G. and Pride, S.R. (2003), "Linear dynamics of double-porosity dual-permeability materials. II. Fluid transport equations", Phys. Rev. E, 68(3), 036604. https://doi.org/10.1103/PhysRevE.68.036604.   DOI
19 Vogelaar, B. (2009), "Fluid effect on wave propagation in heterogeneous porous media", Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands.
20 Tang, X.M. (2011), "A unified theory for elastic wave propagation through porous media containing cracks-An extension of Biot's poroelastic wave theory", Sci. China Earth Sci., 54(9), 1441-1452. https://doi.org/10.1007/s11430-011-4245-7.   DOI
21 Vogelaar, B. and Smeulders, D. (2007), "Extension of White's layered model to the full frequency range", Geophys. Prospect., 55(5), 685-695. https://doi.org/10.1111/j.1365-2478.2007.00648.x.   DOI
22 Wang, L., Zhang, J., Shi, Z. and He, W. (2015), "Modeling and analysis of frequency-dependent seismic responses based on rock physics model", Proceedings of the SEG Annual Meeting, New Orleans, Louisiana, U.S.A., October.
23 White, J.E. (1975), "Computed seismic speeds and attenuation in rocks with partial gas saturation", Geophysics, 40(2), 224-232. https://doi.org/10.1190/1.1440520.   DOI
24 White, J.E., Mihailova, N. and Lyakhovitsky, F. (1975), "Low-frequency seismic waves in fluid-saturated layered rocks", J. Acoust. Soc. Am., 57(S1), S30.
25 Pride, S.R. (2004), "Seismic attenuation due to wave-induced flow", J. Geophys. Res., 109(B1), 1-19. https://doi.org/10.1029/2003JB002639.   DOI
26 Zhang, X., Wang, Q., Li, C., Sun, X., Yan, Z. and Nie, Y. (2019), "Numerical simulation of electrokinetic dissipation caused by elastic waves in reservoir rocks", Geomech. Eng., 19(1), 11-20. https://doi.org/10.12989/gae.2019.19.1.011.   DOI
27 Zhao, L., Han, D., Yao, Q., Zhou, R. and Yan, F. (2015), "Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks", Geophysics, 80, D221-D235. https://doi.org/10.1190/geo2014-0307.1.   DOI
28 Zhu, H., Guo, J., Zhao, X., Lu, Q., Luo, B. and Feng, Y.C. (2014), "Hydraulic fracture initiation pressure of anisotropic shale gas reservoirs", Geomech. Eng., 7(4), 403-430. https://doi.org/10.12989/gae.2014.7.4.403.   DOI
29 Ahmad, Q.A., Wu, G., Zhaoyun, Z., Jianlu, W., Kun, L., Tianwei, D. and Khan, N. (2019), "Analysis of attenuation and dispersion of propagating wave due to the coexistence of three fluid phases in the pore volume", Geophys. Prospect., 68(2), 657-677. https://doi.org/10.1111/1365-2478.12873.   DOI
30 Ba, J., Carcione, J.M. and Nie, J.X. (2011), "Biot-Rayleigh theory of wave propagation in double-porosity media", J. Geophys. Res. Solid Earth, 116(B), 1-12. https://doi.org/10.1029/2010JB008185.
31 Pride, S.R., Berryman, J.G. and Harris, J.M. (2004), "Seismic attenuation due to wave-induced flow", J. Geophys. Res. Solid Earth, 109(B1). https://doi.org/10.1029/2003JB002639.
32 Qazi, A.A., Wu, G. and Jianlu, W. (2017), "Computation of wave attenuation and dispersion, by using quasi-static finite difference modeling method in frequency domain", Ann. Geophys., 60(6), S0664. https://doi.org/10.4401/ag-7450.
33 Rubino, J.G. and Holliger, K. (2012), "Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks", Geophys. J. Int., 188, 1088-1102. https://doi.org/10.1111/j.1365-246X.2011.05291.x.   DOI
34 Rubino, J.G. and Holliger, K. (2013), "Research note: Seismic attenuation due to wave-induced fluid flow at microscopic and mesoscopic scales", Geophys. Prospect., 61(4), 882-889. https://doi.org/10.1111/1365-2478.12009.   DOI
35 Rubino, J.G., Muller, T.M., Guarracino, L., Milani, M. and Holliger, K. (2014), "Seismoacoustic signatures of fracture connectivity", J. Geophys. Res. Solid Earth, 119, 2252-2271. https://doi.org/10.1002/2013JB010567.   DOI
36 Subramaniyan, S., Quintal, B., Tisato, N., Saenger, E.H. and Madonna, C. (2014), "An overview of laboratory apparatuses to measure seismic attenuation in reservoir rocks", Geophys. Prospect., 62(6), 1211-1223. https://doi.org/10.1111/1365-2478.12171.   DOI
37 Biot, M.A. (1962), "Generalized theory of acoustic propagation in porous dissipative media", J. Acoust. Soc. Am., 34, 1254. https://doi.org/10.1121/1.1918315.   DOI
38 Ba, J., Carcione, J.M. and Sun, W. (2015), "Seismic attenuation due to heterogeneities of rock fabric and fluid distribution", Geophys. J. Int., 202, 1843-1847. https://doi.org/10.1093/gji/ggv255.   DOI
39 Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range", J. Acoust. Soc. Am., 28(2), 168-178. https://doi.org/10.1121/1.1908239.   DOI
40 Biot, M.A. (1956), "Theory of propagation of elastic waves in a fluid saturated porous solid. II. Higher frequency range", J. Acoust. Soc. Am., 28(2), 179-191. https://doi.org/10.1121/1.1908241.   DOI
41 Bouanati, S., Benrahou, K.H., Atmane, H.A., Yahia, S.A., Bernard, F., Tounsi, A. and Bedia, E.A.A. (2019), "Investigation of wave propagation in anisotropic plates via quasi 3D HSDT", Geomech. Eng., 18(1), 85-96. https://doi.org/10.12989/gae.2019.18.1.085.   DOI
42 Budiansky, B. and O'connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., 12(2), 81-97. https://doi.org/10.1016/0020-7683(76)90044-5.   DOI
43 Carcione, J.M. and Picotti, S. (2006), "P-wave seismic attenuation by slow-wave diffusion: Effects of inhomogeneous rock properties", Geophysics, 71(3), O1-O8. https://doi.org/10.1190/1.2194512.   DOI
44 Dutta, N.C. and Ode, H. (1979), "Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model) - Part I: Biot theory", Geophysics, 44(11), 1777-1788. https://doi.org/10.1190/1.1440938.   DOI
45 Chapman, M. (2003), "Frequency-dependent anisotropy due to meso-scale fractures in the presence of equant porosity", Geophys. Prospect., 51(5), 369-379. https://doi.org/10.1046/j.1365-2478.2003.00384.x.   DOI
46 Sun, W., Ba, J., Muller, T.M., Carcione, J.M. and Cao, H. (2015), "Comparison of P-wave attenuation models of wave-induced flow", Geophys. Prospect., 63(2), 378-390. https://doi.org/10.1111/1365-2478.12196.   DOI
47 Sun, W., Du, H., Zhou, F. and Shao, J. (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.   DOI
48 Ahmad, Q.A., Wu, G. and Jianlu, W. (2017), "Computation of wave attenuation and dispersion, by using quasi-static finite difference modeling method in frequency domain", Ann. Geophys., 60(6), 1-11. https://doi.org/10.4401/ag-7450.
49 Chapman, M. (2009), "Modeling the effect of multiple sets of mesoscale fractures in porous rock on frequency-dependent anisotropy", Geophysics, 74(6), D97-D103. https://doi.org/10.1190/1.3204779.   DOI
50 Dicarlo, D.A., Sahni, A. and Blunt, M.J. (2000), "The effect of wettability on three-phase relative permeability", Transp. Porous Media, 39(3), 347-366. https://doi.org/10.1023/A:1006653323374.   DOI
51 Dutta, N.C. and Ode, H. (1979), "Attenuation and dispersion of compressional waves in fluid-filled porous rocks with partial gas saturation (White model)-Part II: Results", Geophysics, 44, 1789-1805. https://doi.org/10.1190/1.1440939.   DOI
52 Dutta, N.C. and Seriff, A.J. (1979), "On White's model of attenuation gas saturation", Geophysics, 44(11), 1806-1812.   DOI
53 Dvorkin, J. (1993), "Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms", Geophysics, 58(4), 524-533. https://doi.org/10.1190/1.1443435.   DOI
54 Dvorkin, J. (1994), "The squirt-flow mechanism: Macroscopic description", Geophysics, 59(3), 428-438. https://doi.org/10.1190/1.1443605.   DOI
55 Dvorkin, J. and Nur, A. (1993), "Dynamic poroelasticity: A unified model with the squirt and the Biot mechanisms", Geophysics, 58(4), 524-533. https://doi.org/10.1190/1.1443435.   DOI
56 Dvorkin, J., Mavko, G. and Nur, A. (1995), "Squirt flow in fully saturated rocks", Geophysics, 60(1), 97-107. https://doi.org/10.1190/1.1443767.   DOI