• Title/Summary/Keyword: Layer potential

Search Result 1,730, Processing Time 0.029 seconds

Electrical Characteristics of AIGaAs/GaAs HBTs with different Emitter/Base junction structures (접합구조에 따른 AIGaAs/GaAs HBT의 전기적 특성에 관한 연구)

  • 김광식;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.63-66
    • /
    • 2000
  • In this paper, we present the simulation of the heterojunction bipolar transistor with different Emitter-Base junction structures. Our simulation results include effect of setback and graded layer. We prove the emitter efficiency's improvement through setback and graded layer. In 1995, the analytical equations of electric field, electrostatic potential, and junction capacitance for abrupt and linearly graded heterojunctions with or without a setback layer was derived. But setback layer and linearly graded layer's recombination current was considered numerically. Later, recombination current model included setback layer and graded layer will be proposed. New recombination current model also wile include abrupt heterojunction's recombination current model. In this paper, the material parameters of the heterojunction bipolar transistor with different Emitter-Base junction structures is introduced.

  • PDF

Performance Characteristics of Refrigeration and Air Conditioning System Using Hydrocarbon Refrigerants (탄화수소계 냉동공조 시스템의 성능특성에 관한 실험)

  • 이호생;이근태;김재돌;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.728-734
    • /
    • 2004
  • Environmentally friendly refrigerants with zero ozone layer depletion potential are required to be used in refrigerators and air conditioners due to the difficulties related to ozone layer depletion and global warming. A rigorous study for the system performance with new refrigerants having zero ozone layer depletion potential is inevitable before adopting that as a new fluid. The HFC(Hydrofluorocarbon) potential has been recommended as alternatives. In this paper. system performance in the heat pump facilities were studied using R-290, R-600a. R-1270 as an environment friendly refrigerant. R-22 as a HCFC's refrigerant. The experimental apparatus has been set-up as a conventional vapor compression type heat Pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70mm with 1.315mm wall thickness is used for this investigation. The test results showed that the COP of hydrocarbon refrigerants were superior to that of R-22 and the maximum increasing rate of COP was found in R-1270. The refrigeration capacity of hydrocarbon refrigerants were higher than that of R-22. The compressor work was obtained with the maximum value in R-1270 and the minimum one in R-22.

Electrochemical Behavior for a Reduction of Uranium Oxide in a $LiCl-Li_{2}O$ Molten Salt with an Integrated Cathode assembly

  • Park, Sung-Bin;Park, Byung-Heung;Seo, Chung-Seok;Jung, Ki-Jung;Park, Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.39-50
    • /
    • 2005
  • Electrolytic reduction of uranium oxide to uranium metal was studied in a $LiCl-Li_{2}O$ molten salt system. The reduction mechanism of the uranium oxide to a uranium metal has been studied by means of a cyclic voltammetry. Effects of the layer thickness of the uranium oxide and the thickness of the MgO on the overpotential of the cathode and the anode were investigated by means of a chronopotentiometry. From the cyclic voltamograms, the decomposition potentials of the metal oxides are the determining factors for the mechanism of the reduction of the uranium oxide in a $LiCl-3\;wt{\%} Li_{2}O$ molten salt and the two mechanisms of the electrolytic reduction were considered with regards to the applied cathode potential. In the chronopotentiograms, the exchange current and the transfer coefficient based on the Tafel behavior were obtained with regard to the layer thickness of the uranium oxide which is loaded into the porous MgO membrane and the thickness of the porous MgO membrane. The maximum allowable currents for the changes of the layer thickness of the uranium oxide and the thickness of the MgO membrane were also obtained from the limiting potential which is the decomposition potential of LiCl.

  • PDF

Calculation of Stress Intensity Factors Using Single-Layer Potential and Weight Function (Single-Layer 포텐셜과 가중함수를 이용한 응력강도계수의 계산)

  • 이형연;홍창선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.981-989
    • /
    • 1995
  • A new weight function approach to determine SIF(stress intensity factor) using single-layer potential has been presented. The crack surface displacement field was represented by one boundary integral term whose kernel was modified from Kelvin's fundamental solution. The proposed method enables the calculation of SIF using only one SIF solution without any modification for the crack geometries symmetric in two-dimensional plane such as a center crack in a plate with or without an internal hole, double edge cracks, circumferential crack or radial cracks in a pipe. The application procedure to those crack problems is very simple and straightforward with only one SIF solution. The necessary information in the analysis is two reference SIFs. The analysis results using present closed-form solution were in good agreement with those of the literature.

Adsorption of Colloidal Silica Particles on a Glass Substrate

  • Sim, Soo-Man
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1011-1016
    • /
    • 2002
  • Colloidal particles of silica (100 nm in size) were electrostatically dispersed and adsorbed on a glass substrate coated with silica sol or alumina sol. Stability of the suspensions and microstructure of the adsorbed particle layers were discussed in terms of total potential energies between the particles and the substrate. Well-dispersed suspension resulted in a layer with densely packed and regularly arranged particles, whereas less stable suspension resulted in a porous layer with loosely packed and irregularly arranged particles. Despite repulsive interactions between the particles and the substrate coated with silica sol, the observed adsorption can be attributed to chemical bonds formed at the interface between the particle and silica sol. In contrast, the adsorption of the particles on the substrate coated with alumina sol formed a layer with strongly adhered and densely packed particles, due to large attractive interactions between the particles and alumina sol.

Characteristics of Electrowetting of Self-assembled Monolayer and Z-Tetraol Film

  • Lin Li-Yu;Noh Dong-Sun;Kim Dae-Eun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.3
    • /
    • pp.35-38
    • /
    • 2006
  • A study of electrowetting using an Octadecyltrichlorosilane (OTS) self-assembled monolayer (SAM) and Z- Tetraol 2000 perfluoropolyether lubricant as hydrophobic layers on Si and $SiO_2$ wafer was performed. The $SiO_2$ layer used as insulating layer was thermally grown on the silicon wafer to a thickness of 220-230 nm. The results demonstrated that the contact angle decreased from $100^{\circ}$ to $80^{\circ}$ at 28 V applied potential on $SiO_2$ wafer coated with OTS and the contact angle appeared to be reversible. However, the contact angle on the $SiO_2$ wafer coated with Z- Tetraol 2000 was not observable at 28 V applied potential. Furthermore, the contact angle on the Si wafer coated with OTS or Z- Tetraol 2000 appeared to be irreversible due to the generation of electrolysis in the droplet. It is concluded that it is feasible to use SAM as a hydrophobic layer in electrowetting applications.

Polarization Characteristics of Thermal Sprayed Coating Layer (용사코팅층의 분극특성)

  • Ahn, S.H.;Kim, S.J.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.8 no.4
    • /
    • pp.38-43
    • /
    • 2004
  • Thermal spraying onto the metal substrate has been widely used as a technique of the surface treatment in the various industrial field. A wide range of thermal spray technologies exist and all rely on the fundamental process of fusing a metal feedstock, atomizing it and transporting it to the surface of a substrate. Specially, these methods have been taken into account as the protection method against the corrosion. In this study, the polarization characteristics were carried out on the thermal sprayed coating layer immersed in various pH of diluted aqueous solutions at $25^{\circ}C$. Aluminum, Zinc, Ni-base alloy, alumina and polyethylene powder were used with sprayed coating materials. From the polarization curves, the electrochemical corrosion potential($E_{corr}$) and the corrosion current density($I_{corr}$) were investigated.

  • PDF

The Study on the Behavior of Polarization curve of Reinforcement with Oxidation Layer (산화피막이 있는 철근의 분극곡선의 거동에 대한 연구)

  • 한정섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to study for corrosion behavior of reinforcing steel with oxidation layer. Experiments were done with various NaCl concentrations and with immersion time in simulated concrete pore solution(SPS) the characteristics of corrosion behavior were measured by polarization resistance method and cyclic potentiodynamic method. reinforcements were coated by epoxy except corrosion without oxidation layer and it also showed two anodic-nose. by the result of potention dynamic test the potential curve shift to low with time and anodic-nose was appeared with 3% NaCl solution after 15 days. By result of cyclic Potentiodynamic test the type of corrosion was different accoding to concentration.

  • PDF

Electrochemical Frequency Modulation: Solution Resistance and Double Layer Capacitance Considerations

  • Lalvani, Shashi;Ullah, Sifat;Kerr, Lei
    • Corrosion Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.231-241
    • /
    • 2021
  • The objective of this study was to evaluate total current under steady-state conditions for a material undergoing corrosion using the electrochemical frequency modulation (EFM) technique, taking into account the presence of solution resistance and double layer capacitance. The analysis involving linearization of the Tafel curve allowed for the estimation of corrosion parameters. Results showed that the output signal was dependent on fundamental frequencies and their multiples. In addition, the output signal almost manifested itself at frequencies that were sums of fundamental frequencies of the applied sinusoidal signal. The harmonics calculated showed a significant shift from the principal frequency of input signals. The investigation involved the influence of corrosion current and anode-to-cathode Tafel slope ratio on faradaic and non-faradaic currents (including the average and RMS). The model presented showed both qualitative and quantitative improvements over the previously developed EFM technique that ignored the influence of solution resistance and the double layer capacitance while assuming the applied DC potential corresponded to the corrosion potential of the corroding material.

A New Two-Dimensional Model for the Drain-Induced Barrier Lowering of Fully Depleted Short-Channel SOI-MESFET's

  • Jit, S.;Pandey, Prashant;Pal, B.B.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.3 no.4
    • /
    • pp.217-222
    • /
    • 2003
  • A new two-dimensional analytical model for the potential distribution and drain-induced barrier lowering (DIBL) effect of fully depleted short-channel Silicon-on-insulator (SOI)-MESFET's has been presented in this paper. The two dimensional potential distribution functions in the active layer of the device is approximated as a simple parabolic function and the two-dimensional Poisson's equation has been solved with suitable boundary conditions to obtain the bottom potential at the Si/oxide layer interface. It is observed that for the SOI-MESFET's, as the gate-length is decreased below a certain limit, the bottom potential is increased and thus the channel barrier between the drain and source is reduced. The similar effect may also be observed by increasing the drain-source voltage if the device is operated in the near threshold or sub-threshold region. This is an electrostatic effect known as the drain-induced barrier lowering (DIBL) in the short-gate SOI-MESFET's. The model has been verified by comparing the results with that of the simulated one obtained by solving the 2-D Poisson's equation numerically by using the pde toolbox of the widely used software MATLAB.