• Title/Summary/Keyword: Layer exchange

Search Result 532, Processing Time 0.036 seconds

Spin Torque Nano-Oscillator with an Exchange-Biased Free Rotating Layer

  • You, Chun-Yeol
    • Journal of Magnetics
    • /
    • v.14 no.4
    • /
    • pp.168-171
    • /
    • 2009
  • We propose a new type of spin torque nano-oscillator structure with an exchange- biased free rotating layer. The proposed spin torque nano-oscillator consists of a fixed layer and a free rotating layer with an additional anti-ferromagnetic layer, which leads to an exchange bias in the free rotating layer. The spin dynamics of the exchange-biased free rotating layer can be described as an additional exchange field because the exchange bias manifests itself by the existance of a finite exchange bias field. The exchange bias field plays a similar role to that of a finite external field. Hence, microwave generation can be achieved without an external field in the proposed structure.

Exchange Bias Modifications in NiFe/FeMn/NiFe Trilayer by a Nonmagnetic Interlayer

  • Yoon, S.M.;Sankaranarayanan V.K.;Kim, C.O.;Kim, C.G.
    • Journal of Magnetics
    • /
    • v.10 no.3
    • /
    • pp.99-102
    • /
    • 2005
  • Modification in exchange bias of a NiFe/FeMn/NiFe trilayer, on introduction of a nonmagnetic Al layer at the top FeMn/NiFe interface, is investigated in multilayers prepared by rf magnetron sputtering. The introduction of Al layer leads to vanishing of bias of the top NiFe layer. But the bias for the bottom NiFe layer increases steadily with increasing Al layer thickness and attains bias (230 Oe) which is greater than that of the trilayer without the Al layer (150 Oe). When the top NiFe layer thickness is varied, exchange bias has highest value at 12 nm thickness for 1 nm thicknes of Al layer. Ion beam etching of the top NiFe layer also leads to an enhancement in bias for the bottom NiFe layer.

Positive Exchange Bias in Thin Film Multilayers Produced with Nano-oxide Layer

  • Jeon, Byeong-Seon;Hwang, Chan-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.304-305
    • /
    • 2013
  • We report a positive exchange bias (HE) in thinmultilayered filmscontaining nano-oxide layer. The positive HE, obtained for our system results from an antiferromagnetic coupling between the ferromagnetic (FM) CoFe and the antiferromagnetic (AFM) CoO layers, which spontaneously form on top of the nano-oxide layer (NOL). The shift in the hysteresis loop along the direction of thecooling field and the change in the sign of exchange bias are evidence of antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. Our calculation indicates that uncompensated oxygen moments in the NOL results in antiferromagnetic interfacial exchange coupling between the CoO and CoFe layers. One of the interesting features observed with our system is that it displays the positive HE even above the bulk Neel temperature (TN) of CoO. Although the positive HEsystem has a different AFM/FM interfacial spin structure compare to that of the negative HE one, the results of the angular dependence measurements show that the magnetization reversal mechanism can be considered within the framework of the coherent rotation model.

  • PDF

Effect of composition and structure on exchange anisotropy of IrxMn(100-x)/NiFe films

  • Suh, Su-jung;Park, Young-suk;Ro, Jae-chul;Yong-sung;Yoon, Dae-ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.91-95
    • /
    • 1998
  • Exchange anisotropy between IrMn antiferromagnetic layer and NiFe ferromagnetic layer has been studied in IrxMn(100-x)/NiFe/Buffr/Si(100) films deposited by D. C. magnetron sputtering method. Among Zr, Ta, and Cu used as buffer layer, Zr and Ta enhanced the fcc(111) texture of NiFe and IeMn layer, but Cu did not affect microstructure of those layer. Strong fcc(111) texture of IrMn layer was confirmed to be the origin of exchange anisotropy of IrMn. Ir composition control in IrMn layer showed that {{{{ gamma -phase}}}} IrMn is stabilized between 10 and 30 at % Ir, an 21 at. % Ir in IrMn layer was optimum composition that showed maximum exchange anisotropy field. above 200 ${\AA}$ thickness of IrMn, antiferromagnetic property is stabilzed to show saturated exchange anisotropy field. Based pressure was confirmed to be critical requisite in IrMn-based spin-valve GMR system.

  • PDF

Exchange Anisotropy of Polycrystalline Ferromagnetic/Antiferromagnetic Bilayers

  • Tsunoda, Masakiyo;Takahashi, Migaku
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.80-93
    • /
    • 2002
  • The role of magnetic anisotropy of the antiferromagnetic layer on the magnetization process of exchange coupled polycrystalline ferromagnetidantiferromagnetic bilayers is discussed. In order to elucidate the magnetic torque response of Ni-Fe/Mn-Ir bilayers, the single spin ensemble model is newly introduced, taking into account the two-dimensionally random distribution of the magnetic anisotropy axes of the antiferromagnetic grains. The mechanism of the reversible inducement of the exchange anisotropy along desirable directions by field cooling procedure is successfully explained with the new model. Unidirectional anisotropy constant, J$k$, of polycrystalline Ni-Fe/Mn-Ir and Co-Fe/Mn-Ir bilayers is investigated as functions of the chemical composition of both the ferromagnetic layer and the antiferromagnetic layer. The effects of microstructure and surface modification of the antiferromagnetic layer on JK are also discussed. As a notable result, an extra large value of J$k$, which exceeds 0.5 erg/cm$^2$, is obtained for $Co_{70}Fe_{30}Mn_{75}Ir_{25}$ bilayer with the ultra-thin (50${\AA}$∼100${\AA}$) Mn-Ir layer. The exchange anisotropy of $Co_{70}Fe_{30}$ 40 ${\AA}/Mn_{75}Ir_{25}$ 100 ${\AA}$ bilayer is stable for thermal annealing up to $400{^{\circ}C}$, which is sufficiently high for the application of spin valve magnetoresistive devices.

Effects of Thickness of Ferromagnetic Co Layer and Annealing on the Magnetic Properties of Co/IrMn Bilayers. (Co/IrMn 이층막의 자기적 특성과 Co 두께 및 어닐링의 영향)

  • Jung, Jung-Gyu;Lee, Chan-Gyu;Koo, Bon-Heun;Lee, Gun-Hwan;Hayashi, Yasunori
    • Korean Journal of Materials Research
    • /
    • v.13 no.7
    • /
    • pp.447-452
    • /
    • 2003
  • Effects of annealing and thickness of Co layer in Co/IrMn bilayers on the magnetic properties have been investigated. The highest interfacial exchange coupling energy($J_{K}$ = 0.12 erg/$\textrm{cm}^2$) was obtained for 10 nm Co layer thickness. Exchange bias field is inversely proportional to the magnetization, the thickness of the pinned layer, and the grain size of antiferromagnetic layer. Also it is related to the interfacial exchange energy difference, which is expected to depend on the surface roughness. These results almost agree with the random-field model of exchange anisotropy proposed by Malozemoff. Exchange bias field decreased slowly with increasing annealing temperature up to X$300^{\circ}C$. However, exchange bias field increased above $300^{\circ}C$.

Simulations of Ferromagnetic Resonance Spectra Excited in Magnetic Bilayers (이층 자성막에서 여기되는 강자성 공명신호의 모의실험)

  • 김약연;한기평;유성초
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.238-246
    • /
    • 2003
  • We have performed the simulation of ferromagnetic resonance spectra on the exchange coupled bilayer thin films at perpendicular configuration. Variables considered in spectrum calculation were the interfacial exchange constants per unit area, the layer thickness, and the surface anisotropy constants. In case of antiferromagnetic coupling, variation of exchange constant gave a great effect to the absorption spectra of the low and the high magnetization layer. Variation of thickness in low magnetization layer did nt nearly influenced the resonated field of the high magnetization layer. Also, the increase of negative surface anisotropy increased the resonance field of the low and the high magnetization layer.

Enhancement of Crystallinity and Exchange Bias Field in NiFe/FeMn/NiFe Trilayer with Si Buffer Layer Fabricated by Ion-Beam Deposition (이온 빔 증착법으로 제작한 NiFe/FeMn/NiFe 3층박막의 버퍼층 Si에 따른 결정성 및 교환결합세기 향상)

  • Kim, Bo-Kyung;Kim, Ji-Hoon;Hwang, Do-Guwn;Lee, Sang-Suk
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.4
    • /
    • pp.132-136
    • /
    • 2002
  • Enhancement of crystallinity and exchange bias characteristics for NiFe/FeMn/NiFe trilayer with Si buffer layer fabricated by ion-beam deposition were examined. A Si buffer layer promoted (111) texture of fcc crystallities in the initial growth region of NiFe layer deposited on it. FeMn layers deposited on Si/NiFe bilayer exhibited excellent (111) crystal texture. The antiferromagnetic FeMn layer between top and bottom NiFe films with the buffer Si 50 ${\AA}$-thick induced a large exchange coupling field Hex with a different dependence. It was found that H$\sub$ex/ of the bottom and top NiFe films with Si buffer layer revealed large value of about 110 Oe and 300 Oe, respectively. In the comparison of two Ta and Si buffer layers, the NiFe/FeMn/NiFe trilayer with Si could possess larger exchange coupling field and higher crystallinity.

Flow Characteristics in a Clean Room after Divisional Filter Exchange (부분적인 필터교체에 따른 청정실내부의 유동특성)

  • 이재헌;박명식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2110-2121
    • /
    • 1993
  • A numerical investigation has been carried out for the flow characteristics after exchange of some filters from the original layer to the new low pressure loss layer with equal filtering efficiency. The solution domain includes upper plenum, filter layer, clean space, access panels, and lower plenum. The concept of the distributed pressure resistance was applied to describe the momentum loss in filter layer and access panels. The evolution of the flow field is simulated using the low Reynolds number k-.epsilon. over bar turbulent model and SIMPLE algorithm based on the finite volume method. As a result, after the exchange of filter layer the power requirement can be reduced by 8-9 percent. The results also demonstrate that the perpendicularity of the flow near access panels may become worse at new filter layer than origianl filter layer. But the situation can be recovered by adjusting the jopening ratio of access panels.