Browse > Article
http://dx.doi.org/10.3740/MRSK.2003.13.7.447

Effects of Thickness of Ferromagnetic Co Layer and Annealing on the Magnetic Properties of Co/IrMn Bilayers.  

Jung, Jung-Gyu (Department of Metallurgy and Materials Sceince, Changwon National University)
Lee, Chan-Gyu (Department of Metallurgy and Materials Sceince, Changwon National University)
Koo, Bon-Heun (Department of Ceramic Science and Engineering, Changwon National University)
Lee, Gun-Hwan (Korea Institute of Machinery & Materials)
Hayashi, Yasunori (Department of Metallurgy and Materials Sceince, Changwon National University)
Publication Information
Korean Journal of Materials Research / v.13, no.7, 2003 , pp. 447-452 More about this Journal
Abstract
Effects of annealing and thickness of Co layer in Co/IrMn bilayers on the magnetic properties have been investigated. The highest interfacial exchange coupling energy($J_{K}$ = 0.12 erg/$\textrm{cm}^2$) was obtained for 10 nm Co layer thickness. Exchange bias field is inversely proportional to the magnetization, the thickness of the pinned layer, and the grain size of antiferromagnetic layer. Also it is related to the interfacial exchange energy difference, which is expected to depend on the surface roughness. These results almost agree with the random-field model of exchange anisotropy proposed by Malozemoff. Exchange bias field decreased slowly with increasing annealing temperature up to X$300^{\circ}C$. However, exchange bias field increased above $300^{\circ}C$.
Keywords
random-field-model; Irmn; magnetic properties; annealing; sputtering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. C. Schulthess and W. H. Butler, J. Appl. Phys., 85(8), 5510 (1999)   DOI   ScienceOn
2 A. Goldman, Hanbook of Madern Ferromagnetic Materials, p.57, Kluwer Academic publishers, Boston, USA (1999)
3 E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed., p.6-6, Butterworth-Heinemann Ltd., London, England, (1992)
4 C. H. Lai, T. C. Anthony, E. Iwamura and R. L. White, IEEE Trans. Magn., 32, 3419 (1996)   DOI   ScienceOn
5 G. W. Anderson, M. Pakala and Y. Huai, IEEE Trans. Magn., 36(5), 2605 (2000)   DOI   ScienceOn
6 Y. Iijima, O. Taguchi and K. Hirano, Met. Trans., 8A, 991 (1977)
7 H. Iwasaki, A. T. Saito, A. Tsutai and M. Sahashi, IEEE Trans. Magn., 33(5), 2875 (1997)   DOI   ScienceOn
8 M. Takiguchi, S. Ishii, E. Makino and A. Okabe, J. Appl. Phys., 87(12), 2469 (2000)   DOI   ScienceOn
9 A. Maesaka, N. Sugawara, A. Okabe and M. Itabashi, J. Appl. Phys., 83(12), 7628 (1998)   DOI   ScienceOn
10 A. Maesaka, S. Ishii and A. Okabe, J. Appl. Phys., 88(12), 3982 (2000)   DOI   ScienceOn
11 C. G. Lee, B. S. Kim and K. Fukamichi, IEEE Trans. Magn., 33(5), 2928 (1997)
12 N. K. Arkhipora, S. M. Klotsman, I. P. Polikarpova, A. N. Timofeev and P. Shepatkovskii,, Fiz. Met. metalloved., 62, 1882 (1986)
13 H. N. Fuke, K. Saito, Y. Kamiguchi, H. Iwasaki and M. Sahashi, J. Appl. Phys., 81(8), 4004 (1997)   DOI   ScienceOn
14 D. H. Han, J. G. Zhu and J. H. Judy, J. Appl. Phys., 81(8), 4996 (1997)   DOI   ScienceOn
15 A. P. Malozemoff, Phys. Rev. B, 35, 3679 (1987)   DOI   ScienceOn
16 A. P. Malozemoff, J. Appl. Phys., 63(8), 3874 (1988)   DOI
17 G. Anderson, Y. Huai, L. Miloslawsky, J. Appl. Phys., 87(9), 6989 (2000)   DOI   ScienceOn
18 J. C. S. Kools, IEEE Trans. Magn., 32(4), 3165 (1996)   DOI   ScienceOn
19 M. Xu, Z. Lu, T. Yang, C. Liu, S. Cui, Z. Mai, W. Lai, Q. Jia and W. Zheng, J. Appl. Phys., 92(4), 2052 (2002)   DOI   ScienceOn
20 M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich and J. Chazelas, Phys. Rev. Lett., 61(21), 2472 (1988)   DOI   ScienceOn
21 T. Lin, D. Mauri, N. Staud, C. Hwang, G. L. Gorman, Appl. Phys. Lett., 65(9), 1183 (1994)   DOI   ScienceOn
22 J. Van Driel, R. Coehoom, K. M. H. Lenssen, A. E. T. Kuiper and F. R. de Boer, J. Appl. Phys., 85(8), 5522 (1999)   DOI   ScienceOn