• Title/Summary/Keyword: Launch Vehicle Life Cycle

Search Result 9, Processing Time 0.022 seconds

A Study on the Life Cycle for Launch Vehicle in NASA (NASA의 발사체 수명주기에 대한 연구)

  • Jung, Dong-Ho;Kim, Ji-Hoon;Lee, Han-Ju;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.99-105
    • /
    • 2006
  • A Launch vehicle which consists of many sub-systems is one sophisticated huge system. A lot of experience and system integration technique are needed for the launch vehicle to accomplish a mission successfully. The characteristics and complexity in the development of the launch vehicle depend on the size of that. However the systematic work flow is similar to each other. This paper introduces a standardized development process which is based on the whole program life cycles and experiences of NASA on the development of the launch vehicle. The development process can be categorized into 10 phases through the life cycle of the launch vehicle.

  • PDF

A Process of the Risk Management for a Space Launch Vehicle R&D Project (우주발사체 개발사업의 위험관리 프로세스)

  • Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-27
    • /
    • 2016
  • Many countries concentrated on the space developments to enhance the national security and the people's quality of life. A space launch vehicle for accessing the space is a typical large complex system that is composed of the high-technology like high-performance, high-reliability, superhigh-pressure, etc. The project developing large complex system like space launcher is mostly conducted in the uncertain environment. To achieve a goal of the project, its success probability should be enhanced consistently by reducing its uncertainty during the life cycle: it's possible to reduce the project's uncertainty by performing the risk management (RM) that is a method for identifying and tracing potential risk factors in order to eliminate the risks of the project. In this paper, we introduce the risk management (RM) process applied for a Space Launch Vehicle R&D Project.

PLM System Development for Data Management of KSLV-II Program (한국형발사체개발사업 정보 관리를 위한 PLM 시스템 구축)

  • Kwon, Byung-Chan;Park, Chang-Su;Kim, Keun-Taek
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.2
    • /
    • pp.49-54
    • /
    • 2014
  • The main purpose of Korea Space Launch Vehicle II(KSLV-II) Program is to develop a domestic launch vehicle that can deliver a 1.5ton class application satellite into a Low Earth Orbit(600~800km). The data management is an essential factor in systems engineering for success of large-scale complex systems development, and it systematically manages the information and technical data for the total life-cycle of a system. In this paper, data management policies and processes on KSLV-II program are presented, and product life-cycle management system for KSLV-II program is also presented.

A Study on Establishing the Requirements Verification Matrix (RVM) for the Space Launch Vehicle (우주발사체 요구조건 검증 매트릭스(RVM) 수립 연구)

  • Jang, Junyouk;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • The intended system's function and performance can be assured through implementing the development process, the verification compliance against corresponding requirements, in accordance with the fundamental principle from the Systems Engineering. For the effective verification implementation, related core metadata should be selected and managed throughout the development life cycle. And these have to be included in the configuration document such as specification so that taking them as development baselines each phases if necessary. In this paper, associated case study results are introduced to establish the Requirements Verification Matrix (RVM) for the verification management on the space launch vehicle development program.

Development of Configuration Management Methodology for Rocket Development Test Facilities (발사체 개발 시험시설의 형상관리 방법론 개발)

  • Jeon, Chanmin;Choi, Minchan;Park, Taekeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.31-41
    • /
    • 2023
  • This study is a study to develop a configuration management methodology for efficient and systematic management in the event of configuration changes such as deformation, explosion, and remodeling of launch vehicle development test facilities, which are emerging as important national facilities in the era of full-scale space competition. Through the analysis of international standards for configuration management, a configuration management process framework to be applied to launch vehicle development test facilities is extracted, a survey was conducted on experts who performed life cycle engineering of launch vehicle development test facilities, and a configuration management methodology optimized for operation/management of domestic launch vehicle development test facilities was proposed. Identify the configuration for launch vehicle development test facilities, the configuration management manager, configuration management organization, and configuration management board approve/process the configuration changes, and after construction is completed according to design requirements, launch vehicle development test facilities try to manage the configuration in a controlled state.

Comparison and Evaluation of Low-Cycle Fatigue Life Prediction Methods Using Cu-Cr Alloy Developed for Rocket Engines (로켓엔진용 구리크롬 합금의 저주기 피로수명 예측방법 비교 및 평가)

  • Jongchan Park;Jae-Hoon Kim;Keum-Oh Lee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.1-10
    • /
    • 2022
  • For Cu-Cr alloy developed for rocket engines, estimated fatigue lives were calculated using various fatigue life prediction methods and compared with fatigue life acquired from low-cycle fatigue tests. The utilized methods for fatigue life prediction are as follows: Coffin-Manson relation, plastic/total strain energy density relations, Smith-Watson-Topper relation, Tomkins relation, and Jahed-Varvani relation. As results of estimation of fatigue lives, it satisfied within scatter band two compared to the test fatigue lives in all methods. The quantitative calculation of the deviation of predicted fatigue lives gives that the total strain energy density relation presents the best result.

Predictions of Fatigue Life of Copper Alloy for Regenerative Cooling Channel of Thrust Chamber (연소기 재생냉각 채널용 구리합금의 피로수명예측)

  • Lee, Keumoh;Ryu, Chulsung;Heo, Seongchan;Choi, Hwanseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.73-82
    • /
    • 2017
  • Low-cycle thermal fatigue problem resulting from multiple use of a liquid rocket engine has to be considered for the development of a reusable launch vehicle. In this study, life prediction equations suggested by previous researchers were compared as applied to various copper alloy cases to predict fatigue lives from tensile test data. The present study has revealed that among the presently considered life prediction methods, universal slopes method provides the best life prediction result for the copper alloys, and the modified Mitchell's method provides the best life prediction result for oxygen free high conductivity (OFHC) copper.

A Technology Readiness Level (TRL) Management using the Systems Engineering Tool for the Space Launch Vehicle (시스템엔지니어링 전산관리도구를 활용한 우주발사체 기술완성도(TRL) 관리)

  • Jang, Jun Youk;Kwon, Byung Chan;Lim, Chang Young;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.18-24
    • /
    • 2020
  • The KSLV-II project with high difficulties technically requires thorough technical management during long-term life cycle more than 10 years for launching into space. The TRL is a quantitative indicator developed by NASA widely used all over the world to measure technology maturity of a system development objectively and consistently. The TRL is also used to make sure technology level and to establish a future direction in the KSLV-II project. The TRL has advantage enable to identify a technology level through quantitative indicators. However, it takes a lot of efforts such as trials and errors, time and cost to apply it to the project considering the project environments, and stakeholder needs. These include not only to establish TRL management plan from ideal, conceptual and abstractive standards/guidelines such as NASA's, but also to construct TRL management environment enable to apply and manage harmoniously. In the KSLV-II project, it is required to figure out current technology level and technology development trend in the future, to access conveniently, to share related data in real time, and to update periodically for the comprehensive TRL management. From the reason above, the TRL management environment was built by using the systems engineering tool already has been used for other system management data such as requirements in the project. It also could be accomplished a practical management basis of systems engineering from the traceability among system management data including TRL. In this paper, case study results are introduced to manage the TRL for the space launch vehicle using the systems engineering tool in the KSLV-II project.

A Study on Fuel Selection for Next-Generation Launch Vehicles (차세대 발사체용 연료선정에 관한 연구)

  • Kim, Cheulwoong;Lim, Byoungjik;Lee, Keejoo;Park, Jaesung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.62-80
    • /
    • 2021
  • The requirements for the next-generation propulsion system and for a good propellant have been summarized. The characteristics and effectiveness of kerosene, hydrogen, and methane, which are the fuels that are mainly attracting attention in Korea and abroad, were compared with each other. As a result of the comparison, methane was evaluated to be more advantageous than other fuels in reliability, cost, reusability, maintenance, eco-friendliness, safety, lifespan, technical difficulties, engine cycle selection, application of common bulkhead, and non-disassembly/reassembly delivery. And in terms of performance, the specific impulse of methane is higher than that of kerosene, so the efficiency of the launch vehicle can be increased. Methane's properties incluidng eco-friendliness, low-temperature combustion, long life, and maintenability make it beneficial for reuse and for the development of multi-purpose engines.