DOI QR코드

DOI QR Code

Comparison and Evaluation of Low-Cycle Fatigue Life Prediction Methods Using Cu-Cr Alloy Developed for Rocket Engines

로켓엔진용 구리크롬 합금의 저주기 피로수명 예측방법 비교 및 평가

  • Jongchan Park (Launch Vehicle System Integration Team, Korea Aerospace Research Institute) ;
  • Jae-Hoon Kim (School of Mechanical Engineering, Chungnam National University) ;
  • Keum-Oh Lee (Small Launcher R&D Program Office, Korea Aerospace Research Institute)
  • Received : 2022.08.09
  • Accepted : 2022.10.03
  • Published : 2022.10.31

Abstract

For Cu-Cr alloy developed for rocket engines, estimated fatigue lives were calculated using various fatigue life prediction methods and compared with fatigue life acquired from low-cycle fatigue tests. The utilized methods for fatigue life prediction are as follows: Coffin-Manson relation, plastic/total strain energy density relations, Smith-Watson-Topper relation, Tomkins relation, and Jahed-Varvani relation. As results of estimation of fatigue lives, it satisfied within scatter band two compared to the test fatigue lives in all methods. The quantitative calculation of the deviation of predicted fatigue lives gives that the total strain energy density relation presents the best result.

로켓엔진용으로 개발된 구리크롬 합금에 대해 저주기 피로시험을 수행하고 여러가지 피로수명 예측방법을 이용해 예측수명을 구하여 이를 시험수명과 비교하여 보았다. 피로수명 예측방법으로는 Coffin-Manson 관계식, 소성 및 전 변형률 에너지 밀도 관계식, Smith-Watson-Topper 관계식, Tomkins 관계식, Jahed-Varvani 관계식 등 총 6가지 방법을 이용하였다. 피로 예측수명을 계산한 결과 모든 방법에서 시험수명 대비 분산범위 2 이내를 만족하였다. 예측수명 편차의 정량적 확인을 통해 전 변형률 에너지 밀도 관계식이 가장 우수한 결과를 나타냈다.

Keywords

Acknowledgement

본 연구는 "한국형발사체개발사업"의 일환으로 수행되었으며, 이에 감사를 드립니다.

References

  1. "Chromium Copper", retrieved 26 Mar. 2021 from http://www.copper.org/resources/properties/microstructure/chrom_cu.html. 
  2. Lee, K.O., Rye, C.S., Heo, S.C. and Choi, H.S., "A Study on Strength Improvement of Copper Alloy for Combustion Chamber of Liquid-Propellant Engine," 2013 KSPE Fall Conference, Gyeongju, Korea, pp. 328-331, 2013. 
  3. Conway, J.B., Stentz, R.H. and Berling, J.T., "High Temperature, Low-Cycle Fatigue of Copper-Base Alloys in Argon; Part I - Preliminary Results for 12 Alloys at 1000℉ (538℃)," NASA CR-121259, 1973. 
  4. Ellis, L.D., "Observations of a Cast Cu-Cr-Zr Alloy," NASA/TM-2006-213968,
  5. Biswas, A., Nagesh, A., Sukumuran, G., Parameswara, P., Asraff, A.K., Sandhya, R. and Ray, S.K., "Low Cycle Fatigue Behavior of a Cu-Cr-Zr-Ti Alloy," Procedia Engineering, Vol. 55, pp. 171-175, 2013.  https://doi.org/10.1016/j.proeng.2013.03.238
  6. Kalinin, G. and Matera, R, "Comparative Analysis of Copper Alloys for the Heat Sink of Plasma Facing Components in ITER," Journal of Nuclear Materials, Vol. 258-263, Part 1, pp. 345-350, 1998.  https://doi.org/10.1016/S0022-3115(98)00271-2
  7. You, J.H. and Miskiewicz, M., "Material Parameters of Copper and CuCrZr Alloy for Cyclic Plasticity at Elevated Temperatures," Journal of Nuclear Materials, Vol. 373, pp. 269-274, 2008.  https://doi.org/10.1016/j.jnucmat.2007.06.005
  8. Park, J.Y., Jung, Y.I., Choi, B.K., Lee, J.S., Jeong, Y.H. and Hong, B.G., "Investigation on the Microstructure and Mechanical Properties of CuCrZr after Manufacturing Thermal Cycle for Plasma Facing Component," Journal of Nuclear Materials, Vol. 417, pp. 916-919, 2011.  https://doi.org/10.1016/j.jnucmat.2010.12.157
  9. Santecchia, E., Hamouda, A.M.S., Musharavati, F., Zalnezhad, E., Cabibbo, M., El Mehtedi, M. and Spigarelli, S., "A Review on Fatigue Life Prediction Methods for Metal," Advances in Materials Science and Engineering, Vol. 2016, 2016. 
  10. Ryu, C.S., Choi, H.S., Lee, K.O., Kim, J.G., Lim, B.J., Ahn, K.B. and Kim, M.K., "Method for Manufacturing Inner Structure of Regenerative Cooling Type Combustion Chamber," Patent No. 10-2012-0077685, 10 Jul. 2012. 
  11. Seo, H.S. and Kim, K,B., "Microstructure of Sputter-Deposited and Annealed Cu-Cr, Cu-Ti Alloy Films on Polyimide Substrate and Their Adhesion Property," Journal of the Korean Institute of Surface Engineering, Vol. 27, No. 5, pp. 261-272, 1994. 
  12. Song, J.H. and Huh, H., "Dynamic Material Property of the Sinter-Forged Cu-Cr Alloys with the Variation of Chrome Content," Trans. Korean Soc. Mech. Eng. A, Vol. 30, No. 6, pp. 670-677,
  13. Wang, Q.J., Du, Z.Z., Luo, L. and Wang, W., "Fatigue Properties of Ultra-Fine Grain Cu-Cr Alloy Proceeded by Equal-Channel Angular Pressing," Journal of Alloys and Compounds, Vol. 526, pp. 39-44, 2012.  https://doi.org/10.1016/j.jallcom.2012.02.102
  14. Tamiya, Y., "A Validity of Estimation Methods of Total Strain-Fatigue Life Curve about Copper and Copper Alloys," Journal of the Society of Materials Science Japan, Vol. 60, No. 9, pp. 777-782, 2011.  https://doi.org/10.2472/jsms.60.777
  15. Park, J., Lee, K.O. and Kim, J.H., "Life Evaluation of Low-Cycle Fatigue at High Temperature using Plastic Strain Energy Density on Cu-0.6wt%Cr," Trans. Korean Soc. Mech. Eng. A, Vol. 46, No. 9, pp. 827-834, 2022.  https://doi.org/10.3795/KSME-A.2022.46.9.827
  16. Coffin, L.F, "A Study of the Effects of Cyclic Thermal Stresses on a Ductile Metal," Trans. ASME, Vol. 76, pp. 931-950, 1954. 
  17. Manson, S.S., "Behavior of Materials under Conditions of Thermal Stress," NACA TR 1170, 1954. 
  18. Morrow, J.D., "Cyclic Plasticity Strain Energy and Fatigue of Metal," Internal Friction, Damping, and Cyclic Plasticity, ASTM STP 378, Philadelphia, U.S.A, pp. 45-87, Jan. 1965. 
  19. Golos, K. and Ellyin, F., "Total Strain Energy Density as a Fatigue Damage Parameter," Advanced in Fatigue Science and Technology. NATO ASI Series, Vol. 159, pp. 849-858, 1989.  https://doi.org/10.1007/978-94-009-2277-8_42
  20. Smith, K.N., Watson, P. and Topper, T.H., "A Stress-Strain Function for the Fatigue of Materials," International Journal of Materials, Vol. 5, pp. 767-778, 1970. 
  21. Tomkins, B., "Fatigue Crack Propagation - An Analysis," Philosophical Magazine, Vol. 18, pp. 1041-1066, 1968.  https://doi.org/10.1080/14786436808227524
  22. Lee, K.O., Hong, S.G., Yoon, S. and Lee, S,B., "A New High Temperature Life Correlation Model for Austenitic and Ferritic Stainless Steel," International Journal of Fatigue, Vol. 27, Issue 10-12, pp. 1559-1563, 2005.  https://doi.org/10.1016/j.ijfatigue.2005.06.039
  23. Jahed, H. and Varvani-Farahani, A., "Upper and Lower Fatigue Life Limits Model using Energy-Based Fatigue Properties," International Journal of Fatigue, Vol. 28, Issue 5-6, pp. 467-473, 2006. https://doi.org/10.1016/j.ijfatigue.2005.07.039