• Title/Summary/Keyword: Lateral-flow immunoassay

Search Result 25, Processing Time 0.033 seconds

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.

A Method for Quantitative Measurement of Lateral Flow Immunoassay Using Color Camera (컬러 카메라를 이용한 측면유동 면역 어세이 정량분석 방법)

  • Park, Jongwon
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Among semi-quantitative or fully quantitative lateral flow assay readers, an image sensor-based instrument has been widely used because of its simple setup, cheap sensor price, and compact equipment size. For all previous approaches, monochrome CCD or CMOS cameras were used for lateral flow assay imaging in which the overall intensities of all colors were taken into consideration to estimate the analyte content, although the analyte related color information is only limited to a narrow wavelength range. In the present work, we introduced a color CCD camera as a sensor and a color decomposition method to improve the sensitivity of the quantitative biosensor system which utilizes the lateral flow assay successfully. The proposed setup and image processing method were applied to achieve the quantification of imitatively dispensed particles on the surface of a porous membrane first, and the measurement result was then compared with that using a monochrome CCD. The compensation method was proposed in different illumination conditions. Eventually, the color decomposition method was introduced to the commercially available lateral flow immunochromatographic assay for the diagnosis of myocardial infarction. The measurement sensitivity utilizing the color image sensor is significantly improved since the slopes of the linear curve fit are enhanced from 0.0026 to 0.0040 and from 0.0802 to 0.1141 for myoglobin and creatine kinase (CK)-MB detection, respectively.

Optimization of ultra-fast convection polymerase chain reaction conditions for pathogen detection with nucleic acid lateral flow immunoassay

  • Kim, Tae-Hoon;Hwang, Hyun Jin;Kim, Jeong Hee
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.8-13
    • /
    • 2019
  • Recently, the importance of on-site detection of pathogens has drawn attention in the field of molecular diagnostics. Unlike in a laboratory environment, on-site detection of pathogens is performed under limited resources. In this study, we tried to optimize the experimental conditions for on-site detection of pathogens using a combination of ultra-fast convection polymerase chain reaction (cPCR), which does not require regular electricity, and nucleic acid lateral flow (NALF) immunoassay. Salmonella species was used as the model pathogen. DNA was amplified within 21 minutes (equivalent to 30 cycles of polymerase chain reaction) using ultra-fast cPCR, and the amplified DNA was detected within approximately 5 minutes using NALF immunoassay with nucleic acid detection (NAD) cassettes. In order to avoid false-positive results with NAD cassettes, we reduced the primer concentration or ultra-fast cPCR run time. For singleplex ultra-fast cPCR, the primer concentration needed to be lowered to $3{\mu}M$ or the run time needed to be reduced to 14 minutes. For duplex ultra-fast cPCR, $2{\mu}M$ of each primer set needed to be used or the run time needed to be reduced to 14 minutes. Under the conditions optimized in this study, the combination of ultra-fast cPCR and NALF immunoassay can be applied to on-site detection of pathogens. The combination can be easily applied to the detection of oral pathogens.

A Lateral Flow Immunoassay Kit for Detecting Residues of Four Groups of Antibiotics in Farmed Fish (어류 중 4계열 잔류 항생물질 검출을 위한 Lateral Flow Immunoassay Kit 개발)

  • Jo, Mi Ra;Son, Kwang Tae;Kwon, Ji Young;Mok, Jong Soo;Park, Hong Jae;Kim, Hyun Yong;Kim, Gyung Dong;Kim, Ji Hoe;Lee, Tae Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.158-167
    • /
    • 2015
  • A lateral flow immunoassay kit based on antigen-antibody interactions was developed to detect residues of beta-lactams, quinolones, tetracyclines, and sulfonamides in farmed fish. Group-specific antibodies showing cross-reactivity with other antibiotics in the same group were produced in rabbits. The rabbits were immunized eight times to obtain the maximum titers. Antibodies were extracted from the antisera collected from the immunized rabbits and produced group-specific reactions with antibiotics from the four groups. A kit was prepared that optimize conditions for the antigen-antibody reaction, using colloidal gold conjugated antibodies, and was designed to detect the four groups of antibiotics simultaneously. The kit enabled the detection of antibiotics in the four groups at below maximum residue limits (MRLs), which were $200{\mu}g/kg$ for tetracyclines, $100{\mu}g/kg$ for sulfonamides, $50{\mu}g/kg$ for beta-lactams, and $100{\mu}g/kg$ for quinolones. The cross-reactivity of the antibodies ranged from 10-80% for the sulfonamides, 20-100% for tetracyclines, 38-100% for quinolones, and 20-100% for the beta-lactams, confirming that the antibodies were group specific. The test kit was used 30 times to examine spiked antibiotics at the limits of detection (LODs) and all produced positive results, indicating high sensitivity. The LODs for the assay ranged from 4-20 ng/mL for beta-lactams, 25-50 ng/mL for sulfonamides, 20-100 ng/mL for tetracyclines, and 30-80 ng/mL for quinolones, and there were no false negative reactions at above these LODs. In addition, all of the LODs of the developed kit were correlated with high-performance liquid chromatography (HPLC) data. Our lateral flow immunoassay kit can simultaneously detect antibiotic residues from a large number of fish samples rapidly, strengthening the safety of domestic farmed and imported fish.

Norovirus Targeted Bioreceptor Screening Method based on Lateral Flow Immunoassay (LFIA) (노로바이러스 검출을 위한 측면유동면역분석법 기반의 바이오리셉터 선별기법 개발)

  • Huisoo, Jang;Hyeonji, Cho;Tae-Joon, Jeon;Sun Min, Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.136-145
    • /
    • 2022
  • Later flow immunoassay (LFIA) is a protein analytical method based on immunoreaction. On the LFIA based protein analytical method, bioreceptor molecule plays a key role, and so a system that evaluates and manages the binding affinity of bioreceptor is needed to secure detection reliability. In this study, Lateral Flow Immunoassay based rapid Bioreceptor Screening Method (rBSM) is presented that provide a simple and quick evaluating method for the binding affinity to the target protein of the antibody as model bioreceptor. To verify this evaluation method, Virus-like particles (VLP) and anti-VLP antibodies are selected as a model norovirus, which is target protein, and the candidate bioreceptors respectively. Among the 5 different candidate antibodies, appropriate antibody could be sorted out within 30 minutes through rBSM. In addition, selected antibodies were applied to two representative LFIA based techniques, sandwich assay and competitive assay. Among these methods, sandwich assay showed more effective VLP detection method. Through applying selected antibodies and techniques to the commercialized mass production lines, an VLP detecting LFIA kit was developed with a detection limit of 1012 copies/g of VLPs in real samples. Since this proposed method in this study could be easily transformable into other combinations with bioreceptors, it is expected that this technique would be applied to LFIA kit development system and bioreceptor quality management.

Preparation of Surface Functionalized Gold Nanoparticles and their Lateral Flow Immunoassay Applications (표면 개질된 금나노입자의 제조 및 이의 측방유동면역 센서 응용)

  • Kim, Dong Seok;Choi, Bong Gill
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.97-102
    • /
    • 2018
  • In this work, the surface of gold nanoparticles (AuNPs) was modified with small molecules including mercaptoundecanoic acid (MUA) and L-lysine for the development of highly sensitive lateral flow (LF) sensors. Uniformly sized AuNps were synthesized by a modified Turkevich-Frens method, showing an average size of $16.7{\pm}2.1nm$. Functionalized AuNPs were then characterized by transmission electron microscopy, UV-vis spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy. The stable conjugation of AuNPs and antibodies was obtained at pH 7.07 and the antibody concentration of $10{\mu}g/mL$. The functionalized AuNP-based LF sensor exhibited lower detection limit of 10 ng/mL for hepatitis B surface antigens than that of using the bare AuNP-based LF sensor (100 ng/mL).

Application of a Lateral Flow Immunoassay to Determine Ampicillin Residues in Muscle Tissue of Olive Flounder (Paralichthys olivaceus)

  • Cha, Chun Nam;Yu, Eun-Ah;Shin, Min Jung;Park, Eun Kee;Choi, Hyunju;Kim, Suk;Lee, Hu Jang
    • Journal of Food Hygiene and Safety
    • /
    • v.28 no.3
    • /
    • pp.213-216
    • /
    • 2013
  • Antibiotic Detection Kit (Combination I), a lateral flow immunoassay (LFIA) developed for the detection of antibiotic residues in milk, was utilized for the analysis of antibiotic residues in the muscle tissue of olive flounder. After 60-min treatment by dipping in water dosed with ampicillin (200-g/ton water), the residue depletion of ampicillin was investigated in 25 cultured olive flounder (Paralichthys olivaceus). Muscles of fish were sampled on the 1st, 2nd, 3rd, 4th and 5th day after drug treatment. The concentration of ampicillin in the muscle was determined by LFIA. The absorbance ratio of the sample to the control blank (Bs/Bo) was employed as an index to determine the muscle residues in olive flounder. To investigate the recovery rate, standard solutions were added to muscle samples to give final concentrations in the muscle of 4 and 8 ng/ml. The recovery rates of all spiked samples were > 96% of the spiked value. Ampicillin was detected in the muscle of fish treated with the drug until the 2nd day of the withdrawal period. The present study showed that the LFIA can be easily adopted to predict ampicillin residues in tissue of farmed fishes.

Development of Lateral Flow Immunoassay for Antigen Detection in Human Angiostrongylus cantonensis Infection

  • Chen, Mu-Xin;Chen, Jia-Xu;Chen, Shao-Hong;Huang, Da-Na;Ai, Lin;Zhang, Ren-Li
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.3
    • /
    • pp.375-380
    • /
    • 2016
  • Angiostrongyliasis is difficult to be diagnosed for the reason that no ideal method can be used. Serologic tests require specific equipment and are not always available in poverty-stricken zone and are time-consuming. A lateral flow immunoassay (LFIA) may be useful for angiostrongyliasis control. We established a LFIA for the diagnosis of angiostrongyliasis based on 2 monoclonal antibodies (mAbs) against antigens of Angiostrongylus cantonensis adults. The sensitivity and specificity were 91.1% and 100% in LFIA, while those of commercial ELISA kit was 97.8% and 86.3%, respectively. Youden index was 0.91 in LFIA and 0.84 in commercial ELISA kit. LFIA showed detection limit of 1 ng/ml of A. cantonensis ES antigens. This LFIA was simple, rapid, highly sensitive and specific, which opened an alternative approach for the diagnosis of human angiostrongyliasis.

Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers (암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향)

  • Lee, Sooyoung;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.585-590
    • /
    • 2020
  • Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.

Development of a Test Strip Reader for a Lateral Flow Membrane-based Immunochromatographic Assay

  • Park, Je-Kyun;Kim, Suhyeon
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.2
    • /
    • pp.127-131
    • /
    • 2004
  • A low-cost, simple strip reader system using a linear movement mechanism of CD-ROM deck has been developed to characterize a lateral flow membrane-based immunochromatographic assay. The test strip reader was assembled by a CD-ROM deck and home-made optical head especially designed for immunoassays. The optical head for detecting reflected light from the test strip surface consists of green light-emitting diode, large area silicon photodiode, and anodized aluminum mounting block providing a slit structure for cutting light from the LED. The stepping motor of the deck was operated in the full step mode, whose distance of each reading point is about 0.15mm. The performance of the strip reader was tested by analysis of HBV(hepatitis B virus) antigen test kit. This strip reader can be useful for inexpensive, disposable, and membrane-based assays that provide visual evidence of the presence of an analyte in a liquid sample.