Browse > Article
http://dx.doi.org/10.14478/ace.2020.1093

Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers  

Lee, Sooyoung (Department of Chemistry, Kyungpook National University)
Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.31, no.6, 2020 , pp. 585-590 More about this Journal
Abstract
Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.
Keywords
Cancer diseases; Biomarkers; Colorimetry; Lateral flow immunoassay; Noble metallic nanomaterials;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 S. C. Razo, N. A. Panferova, V. G. Panferov, I. V. Safenkova, N. V. Drenova, Y. A. Varitsev, A. V. Zherdev, E. N. Pakina, and B. B. Dzantiev, Enlargement of gold nanoparticles for sensitive immunochromatographic diagnostics of potato brown rot, Sensors, 19, 153 (2019).   DOI
2 J. Kang, G. Yeom, H. Jang, J. Oh, C.-J. Park, and M.-G. Kim, Development of replication protein A-conjugated gold nanoparticles for highly sensitive detection of disease biomarkers, Anal. Chem., 91, 10001-10007 (2019).   DOI
3 J. Kim, A. S. Campbell, B. E.-F. de Avila, and J. Wang, Wearable biosensors for healthcare monitoring, Nat. Biotechnol., 37, 389-406 (2019).   DOI
4 R. Wong and H. Tse, Lateral Flow Immunoassay, Springer Science & Business Media (2008).
5 A. Moyano, E. Serrano-Pertierra, M. Salvador, J. C. Martinez-Garcia, M. Rivas, and M. C. Blanco-Lopez, Magnetic lateral flow immunoassays, Diagnostics, 10, 288 (2020).   DOI
6 H. Li, D. Han, M. A. Hegener, G. M. Pauletti, and A. J. Steckl, Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices, Biomicrofluidics, 11, 024116-024116 (2017).   DOI
7 C. Parolo, A. Sena-Torralba, J. F. Bergua, E. Calucho, C. Fuentes-Chust, L. Hu, L. Rivas, R. Alvarez-Diduk, E. P. Nguyen, S. Cinti, D. Quesada-Gonzalez, and A. Merkoci, Tutorial: Design and fabricationof nanoparticle-based lateral-flow immunoassays, Nat. Protoc., 15, 3788-3816 (2020).   DOI
8 T. Mahmoudi, M. de la Guardia, and B. Baradaran, Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends, Trends Anal. Chem., 125, 115842 (2020).   DOI
9 Z. Qin, W. C. Chan, D. R. Boulware, T. Akkin, E. K. Butler, and J. C. Bischof, Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast, Angew. Chem. Int. Ed., 51, 4358-4361 (2012).   DOI
10 S. I. Yoo, Hybrid materials for engineering the intrinsic properties of fluorophores, KIC News, 15, 2-10 (2012).
11 W. J. Paschoalino, S. Kogikoski, J. T. Barragan, J. F. Giarola, L. Cantelli, T. M. Rabelo, T. M. Pessanha, and L. T. Kubota, Emerging considerations for the future development of electrochemical paper-based analytical devices, ChemElectroChem, 6, 10-30 (2019).   DOI
12 A. E. Urusov, A. V. Zherdev, and B. B. Dzantiev, Towards lateral flow quantitative assays: Detection approaches, Biosensors, 9, 89 (2019).   DOI
13 M. Sajid, A.-N. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, J. Saudi Chem. Soc., 19, 689-705 (2015).   DOI
14 H. Yang, W. Xu, and Y. Zhou, Signal amplification in immunoassays by using noble metal nanoparticles: A review, Microchim. Acta, 186, 859 (2019).   DOI
15 H. Ye and X. Xia, Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques, J. Mater. Chem. B, 6, 7102-7111 (2018).   DOI
16 D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018).   DOI
17 M. O. Rodriguez, L. B. Covian, A. C. Garcia, and M. C. Blanco-Lopez, Silver and gold enhancement methods for lateral flow immunoassays, Talanta, 148, 272-278 (2016).   DOI
18 Z. Li, H. Chen and P. Wang, Lateral flow assay ruler for quantitative and rapid point-of-care testing, Analyst, 144, 3314-3322 (2019).   DOI
19 M. Shen, Y. Chen, Y. Zhu, M. Zhao and Y. Xu, Enhancing the sensitivity of lateral flow immunoassay by centrifugation-assisted flow control, Anal. Chem., 91, 4814-4820 (2019).   DOI
20 C. Fernandez-Sanchez, C. J. McNeil, K. Rawson, O. Nilsson, H. Y. Leung, and V. Gnanapragasam, One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum, J. Immunol. Methods, 307, 1-12 (2005).   DOI
21 H. Yang, Q. He, Y. Chen, D. Shen, H. Xiao, S. A. Eremin, X. Cui, and S. Zhao, Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone, Microchim. Acta, 187, 592 (2020).   DOI
22 Z. Gao, H. Ye, Q. Wang, M. J. Kim, D. Tang, Z. Xi, Z. Wei, S. Shao, and X. Xia, Template Regeneration in galvanic replacement: A route to highly diverse hollow nanostructures, ACS Nano, 14, 791-801 (2020).   DOI
23 Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, and X. Xia, Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics, Nano Lett., 17, 5572-5579 (2017).   DOI
24 P.-Y. You, F.-C. Li, M.-H. Liu, and Y.-H. Chan, Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood, ACS Appl. Mater. Interfaces, 11, 9841-9849 (2019).   DOI
25 X. Lu, T. mei, Q. Guo, W. Zhou, X. Li, J. Chen, X. Zhou, N. Sun, and Z. Fang, Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles, Microchim. Acta, 186, 2 (2018).   DOI
26 P. Preechakasedkit, W. Siangproh, N. Khongchareonporn, N. Ngamrojanavanich, and O. Chailapakul, Development of an automated wax-printed paper-based lateral flow device for alpha-feto-protein enzyme-linked immunosorbent assay, Biosens. Bioelectron., 102, 27-32 (2018).   DOI
27 T. Jiang, Y. Song, D. Du, X. Liu, and Y. Lin, Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis, ACS Sens., 1, 717-724 (2016).   DOI
28 B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics, 8, 39 (2018).   DOI
29 Y. Yao, W. Guo, J. Zhang, Y. Wu, W. Fu, T. Liu, X. Wu, H. Wang, X. Gong, X.-j. Liang, and J. Chang, Reverse fluorescence enhancement and colorimetric bimodal signal readout immunochromatography test strip for ultrasensitive large-scale screening and postoperative monitoring, ACS Appl. Mater. Interfaces, 8, 22963-22970 (2016).   DOI
30 F. Liu, H. Zhang, Z. Wu, H. Dong, L. Zhou, D. Yang, Y. Ge, C. Jia, H. Liu, Q. Jin, J. Zhao, Q. Zhang, and H. Mao, Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen, Talanta, 161, 205-210 (2016).   DOI
31 V.-T. Nguyen, S. Song, S. Park, and C. Joo, Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay, Biosens. Bioelectron., 152, 112015 (2020).   DOI
32 S. Taeb, S. Mortazavi, A. Ghaderi, H. Mozdarani, C. de Almeida, M. Kardan, S. Mortazavi, A. Soleimani, I. Nikokar, and M. Haghani, Alterations of PSA, CA15. 3, CA125, Cyfra21-1, CEA, CA19. 9, AFP and Tag72 tumor markers in human blood serum due to long term exposure to high levels of natural background radiation in Ramsar, Iran, J. Radiat. Res., 12, 133 (2014).   DOI
33 L. Syedmoradi, M. Daneshpour, M. Alvandipour, F. A. Gomez, H. Hajghassem, and K. Omidfar, Point of care testing: The impact of nanotechnology, Biosens. Bioelectron., 87, 373-387 (2017).   DOI
34 M. Urdea, L. A. Penny, S. S. Olmsted, M. Y. Giovanni, P. Kaspar, A. Shepherd, P. Wilson, C. A. Dahl, S. Buchsbaum, G. Moeller, and D. C. Hay Burgess, Requirements for high impact diagnostics in the developing world, Nature, 444, 73-79 (2006).   DOI
35 Y. Huang, T. Xu, W. Wang, Y. Wen, K. Li, L. Qian, X. Zhang, and G. Liu, Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments, Microchim. Acta, 187, 70 (2019).   DOI
36 S. Choi, M. Chen, V. L. Cryns, and R. A. Anderson, A nuclear phosphoinositide kinase complex regulates p53, Nat. Cell Biol., 21, 462-475 (2019).   DOI
37 K. Na, S. K. Jeong, M. J. Lee, S. Y. Cho, S. A. Kim, M. J. Lee, S. Y. Song, H. Kim, K. S. Kim, H. W. Lee, and Y. K. Paik, Human liver carboxylesterase 1 outperforms alpha-fetoprotein as biomarker to discriminate hepatocellular carcinoma from other liver diseases in Korean patients, Int. J. Cancer, 133, 408-415 (2013).   DOI
38 S. H. Lee, E. Goh, and H. J. Lee, Research trend of biochip sensors for biomarkers specific to diagnostics of lung cancer diseases, Appl. Chem. Eng., 29, 645-651 (2018).   DOI
39 A. Fajri, E. Goh, S. H. Lee, and H. J. Lee, Analysis of human serum amyloid A-1 concentrations using a lateral flow immunoassay with CdSe/ZnS quantum dots, Appl. Chem. Eng., 30, 429-434 (2019).   DOI
40 N. A. Byzova, A. V. Zherdev, B. N. Khlebtsov, A. M. Burov, N. G. Khlebtsov, and B. B. Dzantiev, Advantages of highly spherical gold nanoparticles as labels for lateral flow immunoassay, Sensors, 20, 3608 (2020).   DOI