• Title/Summary/Keyword: Lateral soil pressure

Search Result 185, Processing Time 0.036 seconds

Rotation Point of Laterally Loaded Pile Under Multi Layered Soil (다층지반 하에서 수평하중을 받는 말뚝의 회전점)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.708-712
    • /
    • 2008
  • Piles and pile foundations have been in common use since very early times. Usually function of piles is to carry load to a depth at which adequate support is available. Another important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the wind load, lateral action of earthquake, and so on. After Broms (1964), many researchers have been suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient and it gives confusion to pile designers. Lateral earth pressure, essential in lateral capacity estimation, influenced by pile's behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare to the estimation value by previous research. To model the pile set up in the sand, we use the chamber and small scale steel pile, and rain drop method. Test results show the rotation point is formed where the Prasad and Chari's estimation value, and they also show multi layered condition affects to location of rotation point to be scattered.

  • PDF

Analysis of the Rotational Behavior of Piles under Lateral Loading Installed in Multi Layered Soil (다층지반에 근입된 수평재하 말뚝의 회전거동 분석)

  • Kang, Beong-Joon;Kyung, Doo-Hyun;Hong, Jung-Moo;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.55-64
    • /
    • 2009
  • One of the important use of piles is to furnish lateral support and nowadays it is getting highlighted due to the increase of skyscrapers, transmission towers, wind turbines, and other lateral action dependent structures. After Broms (1964), many researchers have suggested methods for estimating lateral capacity of pile. But each method assumes different earth pressure distribution and lateral earth pressure coefficient causing confusion on the part of pile designers. Lateral earth pressure, essential in lateral capacity estimation, is influenced by pile's rotational behavior under lateral load. Prasad and Chari (1999) assumed the rotation point of pile and suggested an equation of ultimate lateral load capacity. In this study, we investigate the depth of rotation point in both homogeneous soil and multi layered soil, and compare with the estimation value by previous research. Test results show that measured rotation point and estimated value by Prasad and Chari's equation show good agreement and multi layered condition affects the location of rotation point to be changed.

Lateral Earth Pressure against Gravity Walls Backfilled by $C-\phi$ Soil ($C-\phi$ 흙으로 뒤채움한 중력식 옹벽에 작용하는 정적토압)

  • Jeong, Seong-Gyo;Heo, Dae-Yeong;Lee, Man-Ryeol
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.47-60
    • /
    • 1996
  • Of the classical theories on lateral earth pressure, the Coulomb's and the Rankine's theories, which have been usually used in practice for design of retaining walls, assumed that the lateral earth pressure was a triangular distribution. However, the experimental results obtained by Terzaghi(1934), Tsagreli(1967), Fang & Ishibashi(1986), etc showed that lateral pressure were not triangular distribution. ' In this study, for rigid walls with inclined backfaces and inclined surfaces backfilled by $C-\phi$ soils, an analytical method of earth pressure distribution has been newly suggested by using the concept of the flat arch. The results calculated by the newly suggested equations were compared with ones by the existed theories. And'the influence factors of the earth pressures by the suggested equations were investigated. As a result, the thrusts obtained by this method agree well with those by the existing theories, except the Rankine's solution. It was showed that the height to the centre of pressure(h) depends mainly upon the inclinations of the backface and the backfilled surface, the angle of internal friction, and the adhesion between the wall and the backfilled soil, instead of 0.33H, where H is the wall height.

  • PDF

Analysis of Estimation of Ultimate Lateral Capacity of Pile in Multi-Layered Soil Using CPT Results and Proposal of Modified Lateral Earth Pressure (다층조건에서 CPT를 이용한 말뚝의 극한수평지지력 평가 분석 및 수정 수평토압분포 제안)

  • Hong, Jung-Moo;Kyung, Doo-Hyun;Kang, Beong-Joon;Lee, Jun-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.47-57
    • /
    • 2009
  • In this study, the ultimate lateral load capacity of pile driven into multi-layered soil was estimated using cone penetration test results and a method was proposed to reflect multi-layered soil conditions. For multi-layered specimens prepared with different relative density at different layers, the cone penetration tests and lateral pile load tests were conducted. Based on the test results, measured and estimated values of the ultimate lateral load were compared and analyzed. The estimated results were obtained from the methods proposed by Broms (1964), Petrasovits & Award (1972) and Prasad & Chari (1999). The method was proposed for modifying the earth pressure distribution of Prasad & Chari (1999) to consider multi-layered soil conditions. From the analysis, it was seen that results obtained from the proposed method showed improvement with less data scatter similarly to those obtained from Broms (1964) and Petrasovits & Award (1972)'s methods.

A study on the stability of pile bridge abutment on soft ground undergoing lateral flow (연약지반에서의 말뚝기초 교대의 측방유동 대책공법 적용에 관한 연구)

  • 오일록;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.753-760
    • /
    • 2003
  • An existing studies concern about movement of pile bridge abutments. However, lateral displacement cause the serious failure of bridge by embankment under soft soil lateral flow A intention is obtained by analyzing the relationship between the safety factor of evaluation for lateral movements. Precise investigation and analysis are performed, in which the lateral movement of bridge abutments has occurred, and construct design strut-slab between bridge abutments in order to restraint lateral flow. As a result of this study, it was found that when evaluation for lateral movements is allowed to use Tschebotarioff's method and lateral flow decision number (I) and revision lateral flow decision number (M$_{I}$) by Korea Highway Corporation. Most important thing is decision of pressure of lateral flow at this case. Tschebotarioff's isoscales triangle method have no trouble analysis of pressure of lateral flow. Strut-slab method are nearly not have constructed case in this field site study that applied method. The method are between abutments combined steel strut and reinforced concrete slab. This method are effective restraint lateral flow but have little difficulty if long span bridge between abutments.s.

  • PDF

A Study on the Recycling of Coal Ash as Structural Backfill materials (구조물 뒷채움재로서의 석탄회 활용에 관한 연구)

  • 여유현
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.74-79
    • /
    • 2000
  • The purpose of this paper is to recycle coal ash as structural backfill materials from electric power plants. Two million tons of coal ash are produced annually. The laboratory test was executed for the basic compatibility as substitution for structural backfill materials and the optimal mixture ratio(fly ash : bottom ash) was decided. In addition the model test was performed using medium scale earth pressure model with small size earth pressure cells model box data logger and some other apparatuses. Mixed coal ash and excellent backfill materials(coheisonless soil SW) were compared in the view of lateral earth pressure variation depending on wall displacement. The reduction of earth pressure when coal ash was used as a bockfill material was monitored comparing to that of cohesionless soil. the cost and environmental pollutants by treating coal ash can be reduced through developing the recycling technology.

  • PDF

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - A Study on the Centrifuge Model Tests - (측방유동을 받는 교대말뚝기초의 거동분석 (I) - 원심모형실험 연구 -)

  • 서정주;서동희;정상섬;김유석
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.5-19
    • /
    • 2003
  • A series of centrifuge model tests were conducted to investigate the behavior of piled bridge abutments subjected to lateral soil movements induced by approach embankments. The effect of clay layer depth and the rate of embankment construction on piled bridge abutments are the main focus of this study. Tests were performed for two loading types: (1) incremental loading applied in six lifts to the final embankment height; (2) instant loading corresponding to the final embankment height applied in one lift quickly. A variety of instrumentations such as LVDTs, strain gauges, earth pressure transducers, and pore pressure transducers are installed in designed positions in order to clarify the soil-pile interaction and the short- and long-term behavior for piled bridge abutments adjacent to surcharge loads. Based on the results of a series of centrifuge model tests, the distribution of lateral flow induced by staged embankment construction has trapezoidal distribution. The maximum lateral soil pressure is about 0.75$\gamma$H at surcharge loading stage, and about 0.35 $\gamma$H at over 80% consolidated stage.

Analytical and ANN-based models for assessment of hunchback retaining walls: Investigating lateral earth pressure in unsaturated backfill

  • Sivani Remash Thottoth;Vishwas N Khatria
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.285-305
    • /
    • 2024
  • This study investigates the behaviour of hunchback retaining walls supporting unsaturated sandy backfill under active earth pressure conditions. Utilizing a horizontal slice method and a unified effective stress methodology, the influence of various factors on lateral earth pressure, including the position of the hunch along the wall, friction angles, and wall heights, is explored. The results suggest that relocating the hunch position from close to the wall's top to near its base leads to a significant decrease (ranging from 54% to 81%) in lateral earth pressure. However, as the hunch position transitions from near the top to mid-height, the point of application of active thrust shifts upward initially, then slightly downward as the hunch position approaches the toe. Notably, the reduction in lateral earth pressure is more pronounced for shorter wall heights and higher friction angles. Building upon these findings, an Artificial Neural Network (ANN)-based model is developed to accurately predict the lateral earth pressure coefficient and point of application, achieving R2 values of 0.94 and 0.93, respectively. In addition, an analytical model based on Coulomb's earth pressure theory is presented and compared with ANN models. These models are anticipated to assist designers and practitioners in optimizing hunchback retaining walls for unsaturated backfill.

Performance of retaining walls with and without sound wall under seismic loads

  • Mock, Erin;Cheng, Lijuan
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.909-935
    • /
    • 2014
  • The seismic characteristics of two semi-gravity reinforced concrete cantilever retaining walls are examined via an experimental program using an outdoor shake table (one with and the other without concrete masonry sound wall on top). Both walls are backfilled with compacted soil and supported on flexible foundation in a steel soil container. The primary damages during both tests are associated with significant lateral displacements of the wall caused by lateral earth pressure; however, no collapse occurs during the tests. The pressure distribution behind the walls has a nonlinear trend and conventional methods such as Mononobe-Okabe are insufficient for accurate pressure estimation.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.