• Title/Summary/Keyword: Lateral control

Search Result 1,463, Processing Time 0.033 seconds

Wheelset Steering Control for Improvement a Running Safety on Curved Track (곡선부 주행안전성 향상을 위한 윤축 조향 제어)

  • Hur, Hyun Moo;Ahn, Da Hoon;Kim, Nam Po;Sim, Kyung Seok;Park, Tae Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.9
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

The Development of Obstacle Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Sensor

  • Yu, Whan-Sin;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.408-412
    • /
    • 2003
  • Obstacle avoidance algorithm is very important on an unmanned vehicle. Therefore, in this research, we propose a algorithm of obstacle avoidance and we can prove through vehicle test and sensor experiments. Obstacle avoidance must be divided into two parts: the first part includes the longitudinal control for acceleration and deceleration and the second part is the lateral control for steering control. Each system is used for unmanned vehicle control, which notes its location, recognizes obstacles surrounding it, and makes a decision how fast to proceed according to circumstances. During the operation, the control strategy of the vehicle can detect obstacles and perform obstacle avoidance on the road, which involves vehicle velocity. In this paper, we propose a method for vehicle control, modeling, and obstacle avoidance, which are confirmed through vehicle tests.

  • PDF

Robust Hcontrol applied on a fixed wing unmanned aerial vehicle

  • Uyulan, Caglar;Yavuz, Mustafa Tolga
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.5
    • /
    • pp.371-389
    • /
    • 2019
  • The implementation of a robust $H_{\infty}$ Control, which is numerically efficient for uncertain nonlinear dynamics, on longitudinal and lateral autopilots is realised for a quarter scale Piper J3-Cub model accepted as an unmanned aerial vehicle (UAV) under the condition of sensor noise and disturbance effects. The stability and control coefficients of the UAV are evaluated through XFLR5 software, which utilises a vortex lattice method at a predefined flight condition. After that, the longitudinal trim point is computed, and the linearization process is performed at this trim point. The "${\mu}$-Synthesis"-based robust $H_{\infty}$ control algorithm for roll, pitch and yaw displacement autopilots are developed for both longitudinal and lateral linearised nonlinear dynamics. Controller performances, closed-loop frequency responses, nominal and perturbed system responses are obtained under the conditions of disturbance and sensor noise. The simulation results indicate that the proposed control scheme achieves robust performance and guarantees stability under exogenous disturbance and measurement noise effects and model uncertainty.

Comparison on postural control between abdominal draw-in maneuver and abdominal expansion maneuver in persons with stroke

  • Choi, Ho-Suk;Shim, Yu-Jin;Shin, Won-Seob
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.113-119
    • /
    • 2016
  • Objective: The effect of abdominal expansion maneuver (AEM) and abdominal draw-in maneuver (ADIM) on postural control in an unsupported position in stroke patients. Design: Randomized controlled trial. Methods: A total of 36 persons with hemiplegic stroke participated in this study. The subjects were randomly divided into an AEM experimental group (n=12), an experimental ADIM group (n=12), and a control group (n=12). We collected the general characteristics of all subjects and the pre-test results before the intervention and after 4 weeks of the intervention. The trunk stabilization training of the ADIM and AEM group were performed 15 minutes a day, 3 times a week for 4 weeks, and general physical therapy was performed 2 times a day, 30 minutes per session, 5 times a week for all three groups. The control group received joint mobilizations, muscle strengthening, endurance strengthening, and gait exercises along with treatment of the central nervous system, such as neuro-developmental treatment, mat, and gait training. The AEM is an inspiratory phase of tidal breathing expanding the lateral lower ribcage in a lateral direction with minimal superior movements of the chest. Then the lower abdomen expands and the navel moves in an anterior-caudal direction. The ADIM is a repeated contraction and relaxation of the anal sphincter during inspiration. The navel pulls the lower abdomen to the direction of the spine without the movement of the trunk and pelvis. Results: Before and after the interventions, medial-lateral axis movement distance, anterior-posterior axis movement distance, sway mean velocity, and sway area 95% was a statistically significant change in all three groups (p<0.05). The post-hoc test showed a significant improvement in medial-lateral axis movement distance, anterior-posterior axis movement distance, sway mean velocity, and sway area in the AEM group compared with the control group, and in the ADIM group compared with the control group (p<0.05). Conclusions: In conclusion, both AEM training and ADIM training are necessary interventions to maintain the independent sitting position according to the characteristics of the patient.

Lane Map-based Vehicle Localization for Robust Lateral Control of an Automated Vehicle (자율주행 차량의 강건한 횡 방향 제어를 위한 차선 지도 기반 차량 위치추정)

  • Kim, Dongwook;Jung, Taeyoung;Yi, Kyong-Su
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.108-114
    • /
    • 2015
  • Automated driving systems require a high level of performance regarding environmental perception, especially in urban environments. Today's on-board sensors such as radars or cameras do not reach a satisfying level of development from the point of view of robustness and availability. Thus, map data is often used as an additional data input to support these systems. An accurate digital map is used as a powerful additional sensor. In this paper, we propose a new approach for vehicle localization using a lane map and a single-layer LiDAR. The maps are created beforehand using a highly accurate DGPS and a single-layer LiDAR. A pose estimation of the vehicle was derived from an iterative closest point (ICP) match of LiDAR's intensity data to the lane map, and the estimated pose was used as an observation inside a Kalmanfilter framework. The achieved accuracy of the proposed localization algorithm is evaluated with a highly accurate DGPS to investigate the performance with respect to lateral vehicle control.

Control Effectiveness Analysis of the hawkmoth Manduca sexta: a Multibody Dynamics Approach

  • Kim, Joong-Kwan;Han, Jae-Hung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.152-161
    • /
    • 2013
  • This paper presents a control effectiveness analysis of the hawkmoth Manduca sexta. A multibody dynamic model of the insect that considers the time-varying inertia of two flapping wings is established, based on measurement data from the real hawkmoth. A six-degree-of-freedom (6-DOF) multibody flight dynamics simulation environment is used to analyze the effectiveness of the control variables defined in a wing kinematics function. The aerodynamics from complex wing flapping motions is estimated by a blade element approach, including translational and rotational force coefficients derived from relevant experimental studies. Control characteristics of flight dynamics with respect to the changes of three angular degrees of freedom (stroke positional, feathering, and deviation angle) of the wing kinematics are investigated. Results show that the symmetric (asymmetric) wing kinematics change of each wing only affects the longitudinal (lateral) flight forces and moments, which implies that the longitudinal and lateral flight controls are decoupled. However, there are coupling effects within each plane of motion. In the longitudinal plane, pitch and forward/backward motion controls are coupled; in the lateral plane, roll and side-translation motion controls are coupled.

Development of a Lateral Control System for Autonomous Vehicles Using Data Fusion of Vision and IMU Sensors with Field Tests (비전 및 IMU 센서의 정보융합을 이용한 자율주행 자동차의 횡방향 제어시스템 개발 및 실차 실험)

  • Park, Eun Seong;Yu, Chang Ho;Choi, Jae Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.179-186
    • /
    • 2015
  • In this paper, a novel lateral control system is proposed for the purpose of improving lane keeping performance which is independent from GPS signals. Lane keeping is a key function for the realization of unmanned driving systems. In order to obtain this objective, a vision sensor based real-time lane detection scheme is developed. Furthermore, we employ a data fusion along with a real-time steering angle of the test vehicle to improve its lane keeping performance. The fused direction data can be obtained by an IMU sensor and vision sensor. The performance of the proposed system was verified by computer simulations along with field tests using MOHAVE, a commercial vehicle from Kia Motors of Korea.

INTEGRATED VEHICLE CHASSIS CONTROL WITH A MAIN/SERVO-LOOP STRUCTURE

  • Li, D.;Shen, X.;Yu, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.803-812
    • /
    • 2006
  • In order to reduce the negative effects of dynamic coupling among vehicle subsystems and improve the handling performance of vehicle under severe driving conditions, a vehicle chassis control integration approach based on a main-loop and servo-loop structure is proposed. In the main-loop, in order to achieve satisfactory longitudinal, lateral and yaw response, a sliding mode controller is used to calculate the desired longitudinal, lateral forces and yaw moment of the vehicle; and in the servo-loop, a nonlinear optimizing method is adopted to compute the optimal control inputs, i.e. wheel control torques and active steering angles, and thus distributes the forces and moment to four tire/road contact patches. Simulation results indicate that significant improvement in vehicle handling and stability can be expected from the proposed chassis control integration.

Web Lateral Control of Cold Rolling Mill Systems Using a Robust PID Control (강인 PID 제어를 이용한 냉간압연 시스템의 웹 횡방향 제어)

  • Park, Chintac;Kim, In-Soo;Lee, Young-Jin;Kim, Jong-Shik;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.373-384
    • /
    • 2002
  • This paper presents a robust PID controller design technique using the concept of model matching method in the frequency domain. To design the robust PID controller satisfying disturbance attenuation and robust tracking property for a reference input, first an H$\infty$ controller satisfying given performance is designed using the H$\infty$ control method. And then, the parameters(proportional, integral, and derivative gains) of the robust PID controller are determined using the model matching at frequency domain. The proposed technique is applied to a position controller design of the web. The simulation results show that the proposed robust PID controller satisfies disturbance attenuation and tracking property.

THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL (원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF