• 제목/요약/키워드: Lateral Load System

Search Result 400, Processing Time 0.021 seconds

Cyclic testing of innovative two-level control system: Knee brace & vertical link in series in chevron braced steel frames

  • Rousta, Ali Mohammad;Zahrai, Seyed Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.3
    • /
    • pp.301-310
    • /
    • 2017
  • For further development of passive control systems to dissipate larger seismic energy and prevent the structures from earthquake losses, this paper proposes an innovative two-level control system to improve behavior of chevron braced steel frames. Combining two Knee Braces, KB, and a Vertical Link Beam, VLB, in a chevron braced frame, this system can reliably sustain main shock and aftershocks in steel structures. The performance of this two-level system is examined through a finite element analysis and quasi-static cyclic loading test. The cyclic performances of VLB and KBs alone in chevron braced frames are compared with that of the presented two-level control system. The results show appropriate performance of the proposed system in terms of ductility and energy dissipation in two different excitation levels. The maximum load capacity of the presented system is about 30% and 17% higher than those of the chevron braced frames with KB and VLB alone, respectively. In addition, the maximum energy dissipation of the proposed system is about 78% and 150% higher than those of chevron braced frames with VLB and KB respectively under two separate levels of lateral forces caused by different probable seismic excitations. Finally, high performance under different earthquake levels with competitive cost and quick installation work for the control system can be found as main advantages of the presented system.

Investigation of the Structural Modeling of Transfer Floor in Column-Supported Wall Structure (기둥지지-벽식구조에서 전이층의 구조해석모델링에 대한 연구)

  • Kim Young-Chan;Lee Jae-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.2 s.70
    • /
    • pp.79-83
    • /
    • 2005
  • Recently, column-supported wall structural system is frequently adopted in mixed-use high-rise buildings. Due to the sudden change of stiffness at the transfer floor proper load transfer and avoiding stress concentration are very important in column-supported wall structural system. It is revealed by many investigators that 2-dimensional analysis is not reliable and inappropriate selection of element for modeling may lead to erroneous result for gravitational loading. In this study, structural behavior of column-supported wall structure at transfer floor subject to lateral loading is compared by changing modeling methods.

Analysis of light-frame, low-rise buildings under simulated lateral wind loads

  • Fischer, C.;Kasal, B.
    • Wind and Structures
    • /
    • v.12 no.2
    • /
    • pp.89-101
    • /
    • 2009
  • The Monte Carlo procedure was used to simulate wind load effects on a light-frame low-rise structure of irregular shape and a main wind force resisting system. Two analytical models were studied: rigid-beam and rigid-plate models. The models assumed that roof diaphragms were rigid beam or rigid plate and shear walls controlled system behavior and failure. The parameters defining wall stiffness, including imperfections, were random and included wall stiffness, wall capacity and yield displacements. The effect of openings was included in the simulation via a set of discrete multipliers with uniform distribution. One and two-story buildings were analyzed and the models can be expanded into multiple-floor structures provided that the assumptions made in this paper are not violated.

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab

  • Turker, Kaan;Gungor, Ilhan
    • Earthquakes and Structures
    • /
    • v.15 no.4
    • /
    • pp.383-393
    • /
    • 2018
  • In this study, seismic performance of low and medium-rise RC buildings with wide-beam and ribbed-slab were evaluated numerically. Moment resisting systems consisting of moment and dual frame were selected as structural system of the buildings. Sufficiency of moment resisting wide-beam frames designed with high ductility requirements were evaluated. Upon necessity frames were stiffen with shear-walls. The buildings were designed in accordance with the Turkish Earthquake Code (TEC 2007) and were evaluated by using the strain-based nonlinear static method specified in TEC. Second order (P-delta) effects on the lateral load capacity of the buildings were also assessed in the study. The results indicated that the predicted seismic performances were achieved for the low-rise (4-story) building with the high ductility requirements. However, the moment resisting frame with high ductility was not adequate for the medium-rise building. Addition of sufficient amount of shear-walls to the system proved to be efficient way of providing the target performance of structure.

The Response Characteristics of Nonlinear Pushover Analysis of Upper Wall-Lower Frame System with X and Y-Directions (X, Y 방향에 따른 상부벽식-하부골조의 비선형 정적응답특성)

  • 강병두;전대한;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.209-216
    • /
    • 2003
  • The purpose of this study is to investigate the response characteristics of pushover analysis of upper wall-lower frame system with X and Y-directions' lateral load Pushover analysis estimates initial elastic stiffness, post-yielding stiffness, and plastic hinges on each story of structures through three-dimensional nonlinear analysis program. The conclusions of this study are as follows; (1) As a result of pushover analysis, the magnitude of nonlinear response and distribution of yield hinge in lower structure are similar with both X and Y directions, but not in upper structure because of different relative stiffness. (2) The maximum drift ratio of roof is larger for X-direction than for Y-direction with respect to magnitude of shear wall areas in upper structure.

  • PDF

Seismic Performance Evaluation for MCR of Nuclear Power Plant Isolated by FPS (FPS로 면진된 원전 주제어실의 내진 성능 평가)

  • 김대곤;김우범;서용표;문대식;김종엽
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.453-460
    • /
    • 2003
  • The objective of this study is to investigate the seismic performance for a seismically isolated main control room (MCR) of nuclear power plant. MCR was isolated by spherically shaped friction pendulum system (FPS). The FPS provided the simplest means of achieving long period in the isolation system under low gravity load. Some parametric studies were conducted with different properties of FPS. When the coefficient of friction in the sliding surface of FPS is low, the seismic performance of MCR was satisfactory However, the lateral displacement in the isolation level was rather large. To restrict this displacement into adequate range, a fluid viscous dampers were used.

  • PDF

An Structural Design for Cyclone Tower's Connections Using Diagrid System (다이아그리드 구조시스템의 접합부개발과 성능평가)

  • Lee, Se-Jung;Lee, Seong-Hui;Kim, Jin-Ho;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • Recently, High-rise building are irregular-shaped to be city landmarks and function as vertical cities to enable the efficient use of land. 3T (Twisted, Tilted & Tapered) designs are being suggested for irregular buildings and studies to develop new structural system have been actively made to satisfy slender shape ratio. In diagrid system, not only gravity load but also lateral load is delivered based on the triangular shape of diagrid, so most of columns are eliminated. Because shearing force is delivered by the axial behavior (tensile/compressive) of diagrid to minimize shearing deformation, the system is more applicable to irregular buildings than existing system where shearing force is delivered by the columns. In this study, the process of selecting connection details and the structural safety of the selected details are verified using the finite element analysis with focus given to the construction overview of the Cyclone Tower. However, the relersed methods of stress concentration are suggested and the performance of stress concentration relieves that it's suggested for the appropriate cap plate thickness and extended length.

  • PDF

Strategical Postures for Relieving EMG Amplitude Discrepancy on Bilateral Low Back Muscles and Total Low Back Muscle Fatigue while Lifting Asymmetric Load Dynamically (비대칭무게중심 물체의 동적 들기 작업시 좌.우 허리 근육의 EMG 진폭차이와 피로를 줄이기 위한 자세 연구)

  • Kim, Sun-Uk;Han, Seung-Jo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.3
    • /
    • pp.103-109
    • /
    • 2012
  • The purpose of this paper is to suggest the strategical lifting postures able to alleviate imbalanced EMG amplitude leading to an increase in low back muscle fatigue while lifting asymmetric load dynamically. Eleven male subjects are required to lift symmetrically an external load with 15.8kg and load center of gravity (LCG) deviated 10cm to the right from the floor to the waist height at the speed of about 25cm/sec. The EMG amplitudes on bilateral low back muscles (Longissimus, Iliocostalis, and Multifidus) are recorded during 2sec and analyzed. Independent variables are trunk postures (No bending vs. Bending to the LCG) and feet placements (Parallel vs. Right foot in front of the other vs. Right foot behind the other). Dependent variables are EMG amplitude average on six muscles and the EMG amplitude difference between right and left muscle group. Results indicate the phenomenon showing an amplitude increase in the left muscle group is equal to an decrease in the right one is observed in dynamic as well as static lifts, bending the trunk to the LCG increases amplitude discrepancy more than no trunk bending, and the amplitude discrepancy in one foot ipsilateral to LCG in front of the other foot is lowest among other foot postures. As bilateral EMG amplitude discrepancy increases total low back muscle fatigue, the strategical combination of no trunk bending and one foot close to LCG in front of the other is recommended for preventing elevated incidence of low back pain (LBP).

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.